【題目】如圖,在矩形ABCD中,AB=2,點E在邊AD上,∠ABE=45°,BE=DE,連接BD,點P在線段DE上,過點P作PQ∥BD交BE于點Q,連接QO,設PD=x,△PQD的面積為y,則能表示y與x函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

【答案】D
【解析】解:∵∠ABE=45°,∠A=90°,

∴△ABE是等腰直角三角形,

∴AE=AB=2,BE= AB=2 ,

∵BE=DE,PD=x,

∴PE=DE﹣PD=2 ﹣x,

∵PQ∥BD,BE=DE,

∴QE=PE=2 ﹣x,

又∵△ABE是等腰直角三角形(已證),

∴點Q到AD的距離= (2 ﹣x)=2﹣ x,

∴△PQD的面積y= x(2﹣ x)=﹣ (x2﹣2 x+2)=﹣ (x﹣ 2+ ,

即y=﹣ (x﹣ 2+

縱觀各選項,只有C選項符合.

故答案為:D.

先得出△ABE是等腰直角三角形,進而求出AE、BE的長,表示出PE、QE,從而求出點Q到AD的距離,由三角形的面積公式可得到y(tǒng)與x的關(guān)系式,根據(jù)解析式可判斷出圖象.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1+∠2=180°,∠3=∠B,試判斷DE與BC的位置關(guān)系,并對結(jié)論進行說理.

證明:DE∥BC.

理由如下:

∵∠1+∠2=180°(已知)

∠1+∠4=180°(平角定義)

∴∠2=∠4(同角的補角相等)

      (  。

∴∠3+   =180°(  。

∵∠3=∠B(已知)

∴∠B+   =180°(等量代換)

      (   )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點E,使CE=3,連接DE,動點P從點B出發(fā),以每秒1個單位的速度沿BC﹣CD﹣DA向終點A運動,設點P的運動時間為t秒,當t的值為__________秒時.△ABP△DCE全等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,已知,那么圖1、之間有什么數(shù)量關(guān)系?并說明理由.

(2)如圖2,已知,點是線段上一點,,的平分線交于點,請利用(1)的結(jié)論求圖2的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA是⊙O的切線,A為切點,AC是⊙O的直徑,AB是弦,PA∥BC交AB于點D.

(1)求證:PB是⊙O的切線.
(2)當BC=2 ,cos∠AOD= 時,求PB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在正方形網(wǎng)格中有一個△ABC,按要求進行下列作圖(只能借助于網(wǎng)格):

(1)畫出△ABCBC邊上的高AD;

(2)畫出先將△ABC向右平移6格,再向上平移3格后的△A1B1C1;

(3)畫一個△BCP(要求各頂點在格點上,P不與A點重合),使其面積等于△ABC的面積.并回答,滿足這樣條件的點P________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線OMON,垂足為O,三角板的直角頂點C落在∠MON的內(nèi)部,三角板的另兩條直角邊分別與ON、OM交于點D和點B

1)填空:∠OBC+ODC=     

2)如圖,若DE平分∠ODCBF平分∠CBM,求證:DEBF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】振興中學某班的學生對本校學生會倡導的抗震救災,眾志成城自愿捐款活動進行抽樣調(diào)查,得到了一組學生捐款情況的數(shù)據(jù).下圖是根據(jù)這組數(shù)據(jù)繪制的統(tǒng)計圖,圖中從左到右各長方形的高度之比為34586,又知此次調(diào)查中捐款25元和30元的學生一共42.

(1)他們一共調(diào)查了多少人?

(2)這組數(shù)據(jù)的眾數(shù)、中位數(shù)各是多少?

(3)若該校共有1560名學生,估計全校學生捐款多少元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們規(guī)定:a*b=10a×10b,例如圖3*4=103×104=107

1)試求12*32*5的值;

2)想一想(a*b*ca*b*c)相等嗎?如果相等,請驗證你的結(jié)論.

查看答案和解析>>

同步練習冊答案