【題目】在平行四邊形ABCD中,E是BC邊上一點,F是DE上一點,若∠B=∠AFE,AB=AF.
求證:(1)△ADF≌△DEC.(2)BE=EF.
【答案】(1)見解析;(2)見解析
【解析】
(1)根據(jù)平行四邊形的性質(zhì)可得DC=AB,AD=BC,AB∥CD,然后再證明AF=DC,∠ADF=∠DEC,∠AFD=∠C,利用AAS可判定△ADF≌△DEC;
(2)根據(jù)全等三角形的性質(zhì)得出AD=DE,DF=EC,再證出BC=DE,即可得出結(jié)論.
(1)證明:∵四邊形ABCD是平行四邊形,
∴DC=AB,AD=BC,AB∥CD,
∴∠ADF=∠DEC,∠B+∠C=180°,
∵∠AFE+∠AFD=180°,∠B=∠AFE,
∴∠AFD=∠C,
∵AB=AF,
∴AF=DC,
在△ADF和△DEC中
,
∴△ADF≌△DEC(AAS);
(2)證明:∵△ADF≌△DEC,
∴AD=DE,DF=EC,
又∵AD=BC,
∴BC=DE,
∴BC-EC=DE-DF,
即BE=EF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一臺放置在水平桌面上的筆記本電腦,將其側(cè)面抽象成如圖2所示的幾何圖形.若顯示屏AO與鍵盤BO長均為24cm,點P為眼睛所在位置,D為AO的中點,連接PD,且PD⊥AO(此時點P為最佳視角),點C在OB的延長線上,PC⊥BC,BC=12cm.
(1)當(dāng)PA=45cm時,求PC的長;
(2)當(dāng)∠AOC=115°時,線段PC的長比(1)中線段PC的長是增大還是減?請通過計算說明.(結(jié)果精確到0.1cm,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、B、C、D是直徑為AB的⊙O上的四個點,CD=BC,AC與BD交于點E。
(1)求證:DC2=CE·AC;
(2)若AE=2EC,求之值;
(3)在(2)的條件下,過點C作⊙O的切線,交AB的延長線于點H,若S△ACH=,求EC之長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,將△ABC繞點A逆時針旋轉(zhuǎn)60°,得到△ADE,若AB=2,∠ACB=30°,則線段CD的長度為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+3的圖象與x軸交于點A,與y軸交于B點,拋物線y=﹣x2+bx+c經(jīng)過A,B兩點,在第一象限的拋物線上取一點D,過點D作DC⊥x軸于點C,交直線AB于點E.
(1)求拋物線的函數(shù)表達(dá)式
(2)是否存在點D,使得△BDE和△ACE相似?若存在,請求出點D的坐標(biāo),若不存在,請說明理由;
(3)如圖2,F是第一象限內(nèi)拋物線上的動點(不與點D重合),點G是線段AB上的動點.連接DF,FG,當(dāng)四邊形DEGF是平行四邊形且周長最大時,請直接寫出點G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=4,BC=5,∠ABC=60°. 按以下步驟作圖:①以C為圓心,以適當(dāng)長為半徑做弧,交CB、CD于M、N兩點;②分別以M、N為圓心,以大于MN的長為半徑作弧,兩弧相交于點E,作射線CE交BD于點O,交AD邊于點F;則BO的長度為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一副籃架由配重、支架、籃板與籃筐組成,在立柱的C點觀察籃板上沿D點的仰角為45°,在支架底端的A點觀察籃板上沿D點的仰角為54°,點C與籃板下沿點E在同一水平線,若AB=1.91米,籃板高度DE為1.05米,求籃板下沿E點與地面的距離.(結(jié)果精確到0.1m,參考數(shù)據(jù):sin54°≈0.80, cos54°≈0.60,tan54°≈1.33)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線y1=kx+3與雙曲線(x>0)交于點P,PA⊥x軸于點A,PB⊥y軸于點B,直線y1=kx+3分別交x軸、y軸于點C和點D,且S△DBP=27,.
(1)求OD和AP的長;
(2)求m的值;
(3)如圖2,點M為直線BP上的一個動點,連接CB、CM,當(dāng)△BCM為等腰三角形時,請直接寫出點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)的一種果汁飲料由A、B兩種水果配制而成,其比例與成本如下方表格所示,已知該飲料的成本價為8元/千克,按現(xiàn)價售出后可獲利潤50%,每個月可出售27500瓶.
(1)求m的值;
(2)由于物價上漲,A水果成本提高了25%,B水果成本提高了20%,在不改變售價的情況下,若要保持每個月的利潤不減少,則現(xiàn)在至少需要售出多少瓶飲料?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com