【題目】為了加快智慧校園建設(shè),某市準(zhǔn)備為試點學(xué)校采購一批、兩種型號的一體機(jī),經(jīng)過市場調(diào)查發(fā)現(xiàn),今年每套型一體機(jī)的價格比每套型一體機(jī)的價格多0.6萬元,且用960萬元恰好能購買500型一體機(jī)和200型一體機(jī).

1)求今年每套型、型一體機(jī)的價格各是多少萬元

2)該市明年計劃采購型、型一體機(jī)1100套,考慮物價因素,預(yù)計明年每套型一體機(jī)的價格比今年上漲25%,每套型一體機(jī)的價格不變,若購買型一體機(jī)的總費用不低于購買型一體機(jī)的總費用,那么該市明年至少需要投入多少萬元才能完成采購計劃?

【答案】(1)今年每套型的價格各是1.2萬元、型一體機(jī)的價格是1.8萬元;(2)該市明年至少需投入1800萬元才能完成采購計劃.

【解析】

(1)直接利用今年每套型一體機(jī)的價格比每套型一體機(jī)的價格多0.6萬元,且用960萬元恰好能購買500型一體機(jī)和200型一體機(jī),分別得出方程求出答案;

(2)根據(jù)題意表示出總費用進(jìn)而利用一次函數(shù)增減性得出答案.

(1)設(shè)今年每套型一體機(jī)的價格為萬元,每套型一體機(jī)的價格為萬元,

由題意可得:,

解得:,

答:今年每套型的價格各是1.2萬元、型一體機(jī)的價格是1.8萬元;

(2)設(shè)該市明年購買型一體機(jī)套,則購買型一體機(jī)套,

由題意可得:,

解得:,

設(shè)明年需投入萬元,

,

的增大而減小,

當(dāng)時,有最小值,

故該市明年至少需投入1800萬元才能完成采購計劃.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游樂園的摩天輪(如圖1)有均勻分布在圓形轉(zhuǎn)輪邊緣的若干個座艙,人們坐在座艙中可以俯瞰美景,圖2是摩天輪的示意圖.摩天輪以固定的速度繞中心順時針方向轉(zhuǎn)動,轉(zhuǎn)一圈為分鐘.從小剛由登艙點進(jìn)入摩天輪開始計時,到第12分鐘時,他乘坐的座艙到達(dá)圖2中的點_________(,,),此點距地面的高度為_______m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,正方形中,點是對角線的中點,點是線段上(不與點,重合)的一個動點,過點交邊于點

1)求證:

2)如圖②,若正方形的邊長為,過點于點,在點運動的過程中,的長度是否發(fā)生變化?若不變,試求出這個不變的值;若變化,請說明理由.

3)用等式表示線段,之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABBC、CD分別與⊙O切于EF、G,且ABCD.連接OBOC,延長CO交⊙O于點M,過點MMNOBCDN

1)求證:MN是⊙O的切線;

2)當(dāng)OB6cm,OC8cm時,求⊙O的半徑及MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC是等腰三角形,AB=AC

1)特殊情形:如圖1,當(dāng)DE∥BC時,有DB EC.(填,“=”

2)發(fā)現(xiàn)探究:若將圖1中的△ADE繞點A順時針旋轉(zhuǎn)αα180°)到圖2位置,則(1)中的結(jié)論還成立嗎?若成立,請給予證明;若不成立,請說明理由.

3)拓展運用:如圖3,P是等腰直角三角形ABC內(nèi)一點,∠ACB=90°,且PB=1,PC=2PA=3,求∠BPC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA切⊙O于點A,PC過點O且與⊙O交于BC兩點,若PA=6cmPB=2cm,則△PAC的面積是_____cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某酒店計劃購買一批換氣扇,已知購買2型換氣扇和2型換氣扇共需220元;購買3型換氣扇和1型換氣扇共需200元.

1)求兩種型號的換氣扇的單價.

2)若該酒店準(zhǔn)備同時購進(jìn)這兩種型號的換氣扇共60臺,并且型換氣扇的數(shù)量不多于型換氣扇數(shù)量的2倍,請設(shè)計出最省錢的購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】京九鐵路“南昌到贛州”段是連接省會城市與江西南大門城市的重要通道.一列快車從南昌開往贛州,列慢車從贛州開往南昌,兩車同時出發(fā),設(shè)慢車行駛的時間為,兩車之間的距離為,圖中的折線表示之間的函數(shù)關(guān)系.

1)慢車的速度為________,快車的速度為________;

2)當(dāng)快車到達(dá)終點贛州后,求之間的函數(shù)關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,過⊙T外一點P引它的兩條切線,切點分別為M,N,若,則稱P為⊙T的環(huán)繞點.

(1)當(dāng)⊙O半徑為1時,

①在中,⊙O的環(huán)繞點是___________;

②直線y=2x+bx軸交于點A,y軸交于點B,若線段AB上存在⊙O的環(huán)繞點,求b的取值范圍;

2)⊙T的半徑為1,圓心為(0,t),以為圓心,為半徑的所有圓構(gòu)成圖形H,若在圖形H上存在⊙T的環(huán)繞點,直接寫出t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案