【題目】在圖1至圖3中,點(diǎn)B是線段AC的中點(diǎn),點(diǎn)D是線段CE的中點(diǎn)。四邊形BCGF和CDHN都是正方形。AE的中點(diǎn)是M,FH的中點(diǎn)是P。
(1)如圖1,點(diǎn)A、C、E在同一條直線上,根據(jù)圖形填空:
①△BMF是__________三角形;
②MP與FH的位置關(guān)系是___________;MP與FH的數(shù)量關(guān)系是____________;
(2)將圖1中的CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個銳角,得到圖2,解答下列問題:
①證明:△BMF是等腰三角形;
②(1)中得到的MP與FH的位置關(guān)系和數(shù)量關(guān)系是否仍然成立?證明你的結(jié)論;
(3)將圖2中的CE縮短到圖3的情況,(2)中的三個結(jié)論還成立嗎?(成立的不需要說明理由,不成立的需要說明理由)
【答案】 等腰直角 MP⊥FH MP=FH
【解析】整體分析:
(1)①②由正方形的性質(zhì)直接得到結(jié)論;(2)連接MH、MD,設(shè)FM與AC交于點(diǎn)Q,證明△FBM≌△MDH,判斷△FMH是等腰直角三角形;(3)由(2)的證明可直接到得結(jié)論.
解:(1)①等腰直角;②MP⊥FH,MP=FH;
(2)①∵B、D、M分別是AC、CE、AE的中點(diǎn),
∴MB∥CD,且MB=CD=BC = BF,
∴△BMF是等腰三角形;
②仍然成立.證明如下:
如圖,連接MH、MD,設(shè)FM與AC交于點(diǎn)Q.
由①可知MB∥CD,MB=CD,
∴四邊形BCDM是平行四邊形,
∴∠CBM=∠CDM.
又∵∠FBQ=∠HDC,∴∠FBM=∠MDH,
∴△FBM≌△MDH,∴FM=MH,∠MFB=∠HMD,
∴∠FMH=∠FMD-∠HMD=∠AQM-∠MFB=∠FBC=90°,
∴△FMH是等腰直角三角形.
∵P是FH的中點(diǎn),∴MP⊥FH,MP=FH;
(3)△BMF不是等腰三角形,理由如下:
∵MB=CD,CD≠BC,∴MB≠BF,且∠FBM>90°;
MP⊥FH仍然成立,MP=FH仍然成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在湖邊高出水面50m的山頂A處看見一艘飛艇停留在湖面上空某處,觀察到飛艇底部標(biāo)志P處的仰角為45°,又觀其在湖中之像的俯角為60°,則飛艇底部P距離湖面的高度為(參考等式: = )( )
A.25 +75
B.50 +50
C.75 +75
D.50 +100
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,請?jiān)谙铝兴膫關(guān)系中,選出兩個恰當(dāng)?shù)年P(guān)系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫出一種即可)
關(guān)系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.
已知:在四邊形ABCD中, , ;
求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小紅星期天從家里出發(fā)汽車去舅舅家做客,當(dāng)她騎了一段路時(shí),想起要買個禮物送給表弟,于是又折回到剛經(jīng)過的一家商店,買好禮物后又繼續(xù)騎車去舅舅家,以下是她本次去舅舅家所用的時(shí)間與路程的關(guān)系式示意圖.根據(jù)圖中提供的信息回答下列問題:
(1)小紅家到學(xué)校的路程是______米,小紅在商店停留了______分鐘;
(2)在整個去舅舅家的途中哪個時(shí)間段小紅騎車速度最快?最快速度是多少米/分?
(3)本次去舅舅家的行程中,小紅一共行駛了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為的大正方形,兩塊是邊長都為的小正方形,五塊是長為、寬為的全等小矩形,且> .(以上長度單位:cm)
(1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式可以因式分解為 ;
(2)若每塊小矩形的面積為10,四個正方形的面積和為58,試求圖中所有裁剪線(虛線部分)長之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD相交于點(diǎn)O,OA平分∠EOC.
(1)若∠EOC=80°,求∠BOD的度數(shù);
(2)若∠EOC=∠EOD,求∠BOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”期間,某商鋪經(jīng)營某種旅游紀(jì)念品.該商鋪第一次批發(fā)購進(jìn)該紀(jì)念品共花費(fèi)3 000元,很快全部售完.接著,該商鋪第二次批發(fā)購進(jìn)該紀(jì)念品共花費(fèi)9000元.已知第二次所購進(jìn)該紀(jì)念品的數(shù)量是第一次的2倍還多300個,第二次的進(jìn)價(jià)比第一次的進(jìn)價(jià)提高了20%.
(1)求第一次購進(jìn)該紀(jì)念品的進(jìn)價(jià)是多少元?
(2)若該紀(jì)念品的兩次售價(jià)均為9元/個,兩次所購紀(jì)念品全部售完后,求該商鋪兩次共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】企業(yè)舉行“愛心一日捐”活動,捐款金額分為五個檔次,分別是50元,100元,150元,200元,300元.宣傳小組隨機(jī)抽取部分捐款職工并統(tǒng)計(jì)了他們的捐款金額,繪制成兩個不完整的統(tǒng)計(jì)圖,請結(jié)合圖表中的信息解答下列問題:
(1)宣傳小組抽取的捐款人數(shù)為_____人,請補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在扇形統(tǒng)計(jì)圖中,求100元所對應(yīng)扇形的圓心角的度數(shù);
(3)已知該企業(yè)共有500人參與本次捐款,請你估計(jì)捐款總額大約為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠B=30°,BC=12.
(1)用尺規(guī)作圖的方法作AB的垂直平分線MN,分別交BC、AB于點(diǎn)M、N(保留作圖痕跡,不要求寫作法);
(2)求第(1)題中的CM的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com