【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為的大正方形,兩塊是邊長都為的小正方形,五塊是長為、寬為的全等小矩形,且> .(以上長度單位:cm)
(1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式可以因式分解為 ;
(2)若每塊小矩形的面積為10,四個正方形的面積和為58,試求圖中所有裁剪線(虛線部分)長之和.
【答案】(1) (m+2n)(2m+n);(2)42 cm.
【解析】試題分析:(1)根據(jù)圖象由長方形面積公式將代數(shù)式2m2+5mn+2n2因式分解即可;
(2)根據(jù)正方形的面積得出正方形的邊長,再利用每塊小矩形的面積為10厘米2,得出等式求出m+n,進一步得到圖中所有裁剪線(虛線部分)長之和即可.
試題解析:(1)2m2+5mn+2n2可以因式分解為(m+2n)(2m+n);
(2)依題意得,2m2+2n2=58,mn=10,
∴m2+n2=29,
∵(m+n)2=m2+2mn+n2,
∴(m+n)2=29+20=49,
∵m+n>0,
∴m+n=7,
∴.圖中所有裁剪線(虛線部分)長之和為42cm.
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,D是AB邊上的一點,以BD為直徑作⊙O交AC于點E,連結DE并延長,與BC的延長線交于點F.且BD=BF.
(1)求證:AC與⊙O相切.
(2)若BC=6,AB=12,求⊙O的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,直線EF分別交兩直角邊AB、BC與E、F兩點,且EF∥AC,P是斜邊AC的中點,連接PE,PF,且AB= ,BC= .
(1)當E、F均為兩直角邊的中點時,求證:四邊形EPFB是矩形,并求出此時EF的長;
(2)設EF的長度為x(x>0),當∠EPF=∠A時,用含x的代數(shù)式表示EP的長;
(3)設△PEF的面積為S,則當EF為多少時,S有最大值,并求出該最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在進行二次根式化簡時,我們有時會碰上如,, 一樣的式子,其實我們還可以將其進一步化簡:
=(一),
(二),
(三),
還可以用以下方法化簡: =(四)
以上這種化簡的方法叫做分母有理化。
(1)請化簡=___.
(2)若a是的小數(shù)部分則=___.
(3)矩形的面積為,一邊長為,則它的周長為___.
(4)化簡.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個點從數(shù)軸上的原點開始,先向右移動3個單位長度,再向左移動5個單位長度,可以看到終點表示的數(shù)是-2.已知點A,B是數(shù)軸上的點,請參照圖并思考,完成下列各題.
(1) 若點A表示數(shù),將A點向右移動5個單位長度,那么終點B表示的數(shù)是 ,此時 A,B兩點間的距離是________.
(2) 若點A表示數(shù)3,將A點向左移動6個單位長度,再向右移動5個單位長度后到達點B,則B表示的數(shù)是________;此時 A,B兩點間的距離是________.
(3)若A點表示的數(shù)為m,將A點向右移動n個單位長度,再向左移動t個單位長度后到達終點B,此時A、B兩點間的距離為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在圖1至圖3中,點B是線段AC的中點,點D是線段CE的中點。四邊形BCGF和CDHN都是正方形。AE的中點是M,FH的中點是P。
(1)如圖1,點A、C、E在同一條直線上,根據(jù)圖形填空:
①△BMF是__________三角形;
②MP與FH的位置關系是___________;MP與FH的數(shù)量關系是____________;
(2)將圖1中的CE繞點C順時針旋轉一個銳角,得到圖2,解答下列問題:
①證明:△BMF是等腰三角形;
②(1)中得到的MP與FH的位置關系和數(shù)量關系是否仍然成立?證明你的結論;
(3)將圖2中的CE縮短到圖3的情況,(2)中的三個結論還成立嗎?(成立的不需要說明理由,不成立的需要說明理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著人們“節(jié)能環(huán)保,綠色出行”意識的增強,越來越多的人喜歡騎自行車出行.某自行車廠生產的某型號自行車去年銷售總額為8萬元.今年該型號自行車每輛售價預計比去年降低200元.若該型號車的銷售數(shù)量與去年相同,那么今年的銷售總額將比去年減少10%,求該型號自行車去年每輛售價多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線y=﹣3x+3與x軸、y軸分別父于A、B兩點,點A關于直線x=﹣1的對稱點為點C.
(1)求點C的坐標;
(2)若拋物線y=mx2+nx﹣3m(m≠0)經(jīng)過A、B、C三點,求拋物線的表達式;
(3)若拋物線y=ax2+bx+3(a≠0)經(jīng)過A,B兩點,且頂點在第二象限.拋物線與線段AC有兩個公共點,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學組織學生參加交通安全知識網(wǎng)絡測試活動.小王對九年(3)班全體學生的測試成績進行了統(tǒng)計,并將成績分為四個等級:優(yōu)秀、良好、一般、不合格,繪制成如下的統(tǒng)計圖(不完整),
請你根據(jù)圖中所給的信息解答下列問題:
(1)九年(3)班有名學生,并把折線統(tǒng)計圖補充完整;
(2)已知該市共有12000名中學生參加了這次交通安全知識測試,請你根據(jù)該班成績估計該市在這次測試中成績?yōu)閮?yōu)秀的人數(shù);
(3)小王查了該市教育網(wǎng)站發(fā)現(xiàn),全市參加本次測試的學生中,成績?yōu)閮?yōu)秀的有5400人,請你用所學統(tǒng)計知識簡要說明實際優(yōu)秀人數(shù)與估計人數(shù)出現(xiàn)較大偏差的原因;
(4)該班從成績前3名(2男1女)的學生中隨機抽取2名參加復賽,請用樹狀圖或列表法求出抽到“一男一女”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com