【題目】(1) 知識儲備
①如圖 1,已知點 P 為等邊△ABC 外接圓的弧BC 上任意一點.求證:PB+PC= PA.
②定義:在△ABC 所在平面上存在一點 P,使它到三角形三頂點的距離之和最小,則稱點 P 為△ABC
的費馬點,此時 PA+PB+PC 的值為△ABC 的費馬距離.
(2)知識遷移
①我們有如下探尋△ABC (其中∠A,∠B,∠C 均小于 120°)的費馬點和費馬距離的方法:
如圖 2,在△ABC 的外部以 BC 為邊長作等邊△BCD 及其外接圓,根據(1)的結論,易知線段____的長度即為△ABC 的費馬距離.
②在圖 3 中,用不同于圖 2 的方法作出△ABC 的費馬點 P(要求尺規(guī)作圖).
(3)知識應用
①判斷題(正確的打√,錯誤的打×):
ⅰ.任意三角形的費馬點有且只有一個(__________);
ⅱ.任意三角形的費馬點一定在三角形的內部(__________).
②已知正方形 ABCD,P 是正方形內部一點,且 PA+PB+PC 的最小值為,求正方形 ABCD 的
邊長.
【答案】 AD √ ×
【解析】分析:(1)根據已知首先能得到△PCE為等邊三角形,進而得出△ACE≌△BPC,即可得證;
(2)①仔細閱讀新知的概念,結合圖形特點,直接有結論判斷即可;
②根據尺規(guī)作圖,作等邊三角形即可求得費馬點;
(3)①ⅰ.根據作圖可知費馬點有且只有一個,ⅱ.由圖1和圖2,可知任意三角形的費馬點不一定都在三角形的內部;
②將△ABP沿點B逆時針旋轉60°到△A1BP1,過A1作A1H⊥BC,交CB的延長線于H,連接P1P,根據等邊三角形的判定與性質,得到△P1PB是正三角形,進而得出∠A1BH=30°,然后由正方形的性質和30°角直角三角形的性質,根據勾股定理求出正方形的邊長.
詳解:(1)①證明:在PA上取一點E,使PE=PC,連接CE,
∵正三角形ABC
∴∠APC=∠ABC=60°
又∵PE=PC,∴△PEC是正三角形
∴CE=CP ∠ACB=∠ECP=60°
∴∠1=∠2
又∵∠3=∠4 BC=AC
∴△ACE≌△BCP (ASA)
∴AE=BP
即:BP+CP=AP.
(2)①線段 AD 的長度即為△ABC的費馬距離.
②過AB和AC分別向外作等邊三角形,連接CD,BE,
交點即為P0.
(3)①ⅰ.( √ ) ②ⅱ.( × )
②解:將△ABP沿點B逆時針旋轉60°到△A1BP1,
過A1作A1H⊥BC,交CB的延長線于H,連接P1P,
易得:A1B=AB,PB=P1B,PA=P1 A1,∠P1BP=∠A1BA=60°
∵PB=P1B ∠P1BP=60°
∴△P1PB是正三角形
∴PP1=PB
∵PA+PB+PC的最小值為
∴P1A1+PP1+PC的最小值為
∴A1,P1,P,C在同一直線上,即A1C=
設正方形的邊長為2x
∵∠A1BA=60° ∠CBA=90°
∴∠1=30°
在Rt△A1HB中,A1B=AB=2x,∠1=30°
得:A1H=x,BH=
在Rt△A1HC中,由勾股定理得:
解得:x1=1 x2=1(舍去)
∴正方形ABCD的邊長為2.
科目:初中數學 來源: 題型:
【題目】如圖,世博園段的浦江兩岸互相平行,C、D是浦西江邊間隔200m的兩個場館.海寶在浦東江邊的寶鋼大舞臺A處,測得∠DAB=30°, 然后沿江邊走了500m到達世博文化中心B處,測得∠CBF=60°, 求世博園段黃浦江的寬度(結果可保留根號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在正方形ABCD中,點E在邊CD上,AQ⊥BE于點Q,DP⊥AQ于點P.
(1)求證:AP=BQ;
(2)在不添加任何輔助線的情況下,請直接寫出圖中四對線段,使每對中較長線段與較短線段長度的差等于PQ的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】張浩調查統(tǒng)計了他們家5月份每次打電話的通話時長,并將統(tǒng)計結果進行分組(每組含量最小值,不含最大值),將分組后的結果繪制成如圖所示的頻數分布直方圖,則下列說法中不正確的是( )
A. 張浩家5月份打電話的總頻數為80次
B. 張浩家5月份每次打電話的通話時長在5﹣10分鐘的頻數為15次
C. 張浩家5月份每次打電話的通話時長在10﹣15分鐘的頻數最多
D. 張浩家5月份每次打電話的通話時長在20﹣25分鐘的頻率為6%
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于一個函數,如果它的自變量 x 與函數值 y 滿足:當1≤x≤1 時,1≤y≤1,則稱這個函數為“閉 函數”.例如:y=x,y=x 均是“閉函數”. 已知 y ax2 bx c(a0) 是“閉函數”,且拋物線經過點 A(1,1)和點 B(1,1),則 a 的取值范圍是______________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,AF=BE,AE與DF相交于點O.
(1)求證:△DAF≌△ABE;
(2)寫出線段AE、DF的數量和位置關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系xOy中,線段AB在x軸的正半軸上移動,且AB=1,過點A、B作y軸的平行線分別交函數y1=(x>0)與y2=(x>0)的圖像于C、E和D、F,設點A的橫坐標為m (m>0).
(1)連接OC、OE,則△OCE面積為 ;
(2)連接CF,當m為何值時,四邊形ABFC是矩形;
(3)連接CD、EF,判斷四邊形CDFE能否是平行四邊形,并說明理由;
(4)如圖2,經過點B和y軸上點G(0,4)作直線BG交直線AC于點H,若點H的縱坐標為正整數,請求出整數m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:在等邊三角形ABC中,點E在線段AB上,點D在CB的延長線上,
(1)試證明△DEC是等腰三角形;(2)在圖中找出與AE相等的線段,并證明
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結論:(1)4a+b=0;(2)9a+c>﹣3b;(3)7a﹣3b+2c>0;(4)若點A(﹣3,y1)、點B(﹣,y2)、點C(7,y3)在該函數圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結論有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com