【題目】對于一個函數(shù),如果它的自變量 x 與函數(shù)值 y 滿足:當1≤x≤1 時,1≤y≤1,則稱這個函數(shù)為“閉 函數(shù)”.例如:y=x,y=x 均是“閉函數(shù)”. 已知 y ax2 bx c(a0) 是“閉函數(shù)”,且拋物線經(jīng)過點 A(1,1)和點 B(1,1),則 a 的取值范圍是______________.
【答案】或
【解析】分析:分別把點A、B代入函數(shù)的解析式,求出a、b、c的關(guān)系,然后根據(jù)拋物線的對稱軸x=,然后結(jié)合圖像判斷即可.
詳解:∵y ax2 bx c(a0)經(jīng)過點 A(1,1)和點 B(1,1)
∴a+b+c=-1,a-b+c=1
∴a+c=0,b=-1
則拋物線為:y ax2 bx –a
∴對稱軸為x=
①當a<0時,拋物線開口向下,且x=<0,如圖可知,當≤-1時符合題意,所以;當-1<<0時,圖像不符合-1≤y≤1的要求,舍去;
②當a>0時,拋物線的開口向上,且x=>0,由圖可知≥1時符合題意,∴0<a≤;當0<<1時,圖像不符合-1≤y≤1的要求,舍去.
綜上所述,a的取值范圍是:或.
故答案為:或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD∥BC,∠BAC=70°,DE⊥AC于點E,∠D=20°.
(1)求∠B的度數(shù),并判斷△ABC的形狀;
(2)若延長線段DE恰好過點B,試說明DB是∠ABC的平分線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當AB=BC時,四邊形ABCD是菱形
B. 當AC⊥BD時,四邊形ABCD是菱形
C. 當∠ABC=90°時,四邊形ABCD是矩形
D. 當AC=BD時,四邊形ABCD是正方形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知⊙O的半徑為1,PQ是⊙O的直徑,n個相同的正三角形沿PQ排成一列,所有正三角形都關(guān)于PQ對稱,其中第一個△A1B1C1的頂點A1與點P重合,第二個△A2B2C2的頂點A2是B1C1與PQ的交點……最后一個△AnBnCn的頂點Bn,Cn在圓上.
(1)如圖②,當n=1時,求正三角形的邊長a1.
(2)如圖③,當n=2時,求正三角形的邊長a2.
(3)如圖①,求正三角形的邊長an(用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,已知AB=CD,M、N、P分別是AD、BC、BD的中點∠ABD=20°,∠BDC=70°,則∠NMP的度數(shù)為( 。
A. 50° B. 25° C. 15° D. 20
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1) 知識儲備
①如圖 1,已知點 P 為等邊△ABC 外接圓的弧BC 上任意一點.求證:PB+PC= PA.
②定義:在△ABC 所在平面上存在一點 P,使它到三角形三頂點的距離之和最小,則稱點 P 為△ABC
的費馬點,此時 PA+PB+PC 的值為△ABC 的費馬距離.
(2)知識遷移
①我們有如下探尋△ABC (其中∠A,∠B,∠C 均小于 120°)的費馬點和費馬距離的方法:
如圖 2,在△ABC 的外部以 BC 為邊長作等邊△BCD 及其外接圓,根據(jù)(1)的結(jié)論,易知線段____的長度即為△ABC 的費馬距離.
②在圖 3 中,用不同于圖 2 的方法作出△ABC 的費馬點 P(要求尺規(guī)作圖).
(3)知識應(yīng)用
①判斷題(正確的打√,錯誤的打×):
ⅰ.任意三角形的費馬點有且只有一個(__________);
ⅱ.任意三角形的費馬點一定在三角形的內(nèi)部(__________).
②已知正方形 ABCD,P 是正方形內(nèi)部一點,且 PA+PB+PC 的最小值為,求正方形 ABCD 的
邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:是某出租車單程收費y(元)與行駛路程x(千米)之間的函數(shù)關(guān)系圖象,根據(jù)圖象回答下列問題:
(1)當行使8千米時,收費應(yīng)為 元;
(2)從圖象上你能獲得哪些信息?(請寫出2條)
① ________
②____________________________
(3)求出收費y(元)與行使x(千米)(x≥3)之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA邊上的中點,連結(jié)AC、BD,回答問題
(1)對角線AC、BD滿足條件_____時,四邊形EFGH是矩形.
(2)對角線AC、BD滿足條件_____時,四邊形EFGH是菱形.
(3)對角線AC、BD滿足條件_____時,四邊形EFGH是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E,F(xiàn)分別是AB,CD的中點,AF與DE相交于點G,BF與CE相交于點H.
(1)求證:四邊形EHFG是平行四邊形;
(2)①若四邊形EHFG是菱形,則平行四邊形ABCD必須滿足條件 ;
②若四邊形EHFG是矩形,則平行四邊形ABCD必須滿足條件 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com