【題目】隨著新學校建成越來越多,絕大部分孩子已能就近入學,某數(shù)學學習興趣小組對八年級一班學生上學的交通方式進行問卷調(diào)查,并將調(diào)查結(jié)果畫出下列兩個不完整的統(tǒng)計圖(圖1、圖2).請根據(jù)圖中的信息完成下列問題.
(1)該班參與本次問卷調(diào)查的學生共有 人;
(2)請補全圖1中的條形統(tǒng)計圖;
(3)在圖2的扇形統(tǒng)計圖中,“騎車”所在扇形的圓心角的度數(shù)是 度.
【答案】(1)50;(2)見解析;(3)129.6.
【解析】
(1)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得本次問卷調(diào)查的學生數(shù);
(2)根據(jù)(1)中的答案可以求得步行的人數(shù),從而可以將條形統(tǒng)計圖補充完整;
(3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得騎車所在扇形的圓心角的度數(shù).
解:(1)由題意可得,
本次問卷調(diào)查的學生共有:9÷18%=50(人),
故答案為:50;
(2)步行的有:50﹣9﹣18﹣7=16(人),
補全的條形統(tǒng)計圖如下圖所示;
(3)在圖2的扇形統(tǒng)計圖中,“騎車”所在扇形的圓心角的度數(shù)是:360°×36%=129.6°,
故答案為:129.6°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y=(x>0)的圖象與直線y=mx交于點C,直線l:y=4分別交兩函數(shù)圖象于點A(1,4)和點B,過點B作BD⊥l交反比例函數(shù)圖象于點 D.
(1)求反比例函數(shù)的解析式;
(2)當BD=2AB時,求點B的坐標;
(3)在(2)的條件下,直接寫出不等式>mx的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=540,以AB為直徑的⊙O分別交AC,BC于點D,E,過點B作⊙O的切線,交AC的延長線于點F。
(1)求證:BE=CE;
(2)求∠CBF的度數(shù);
(3)若AB=6,求的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐
問題情境:
已知是正方形的對角線,將正方形和正方形按如圖放置.
(1)如圖1,使點與點重合,與相交于點,與的延長線相交于點.求證:.
操作發(fā)現(xiàn):
圖1
(2)如圖2,使點在上(,兩點除外),與相交于點,與的延長線相交于點.判斷和的數(shù)量關系,并說明理由;
圖2
拓廣探索:
(3)如圖3,使在上(,兩點除外),經(jīng)過點,與正方形的外角的平分線相交于點.判斷和的數(shù)量關系,并說明理由.
圖3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在扇形AOB中,∠AOB=90°,半徑OA=4.將扇形AOB沿過點B的直線折疊,點O恰好落在弧AB上點C處,折痕交OA于點D,則圖中陰影部分的面積為_______ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結(jié)論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當BP=1時,tan∠OAE=,其中正確的結(jié)論是( 。
A.①③B.①②③C.①③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)作圖:作∠MON的平分線OE,在OE上任取一點A,過A作AB∥OM,AC∥ON,連接BC交OA于D.(只保留作圖痕跡)
(2)BC與OA的位置關系是什么?請加以證明.
(3)若OA=8,AC=5,則BD是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某中學學生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調(diào)查統(tǒng)計.現(xiàn)從該校隨機抽取名學生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學生只能選擇其中一項).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖.由圖中提供的信息,解答下列問題:
(1)求n的值;
(2)若該校學生共有1200人,試估計該校喜愛看電視的學生人數(shù);
(3)若調(diào)查到喜愛體育活動的4名學生中有3名男生和1名女生,現(xiàn)從這4名學生中任意抽取2名學生,求恰好抽到2名男生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com