【題目】有一列數,第一個數為x1=1,第二個數為x2=3,從第三個數開始依次為x3,x4,…,xn,….從第二個數開始,每個數是左右相鄰兩個數和的一半,如x2=,x3=.
(1)求x3,x4,x5的值,并寫出計算過程;
(2)根據(1)的結果,推測x9等于多少;
(3)探索這一列數的規(guī)律,猜想第k(k為正整數)個數xk等于多少.
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:
學習了三角形全等的判定方法(即“SAS”“ASA”“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聰繼續(xù)對“兩個三角形滿足兩邊和其中一邊的對角對應相等”的情形進行研究
小聰將命題用符號語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.
小聰的探究方法是對∠B分為“直角、鈍角、銳角”三種情況進行探究.
第一種情況:當∠B 是直角時,如圖1,△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根據“HL”定理,可以知道Rt△ABC≌Rt△DEF.
第二種情況:當∠B 是銳角時,如圖2,BC=EF,∠B=∠E<90°,在射線EM上有點D,使DF=AC,畫出符合條件的點D,則△ABC和△DEF的關系是 ;
A.全等 B.不全等 C.不一定全等
第三種情況:當∠B是鈍角時,如圖3,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°.過點C作AB邊的垂線交AB延長線于點M;同理過點F作DE邊的垂線交DE延長線于N,根據“ASA”,可以知道△CBM≌△FEN,請補全圖形,進而證出△ABC≌△DEF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列條件:①∠A=∠B=∠C;②∠A∶∠B∶∠C=1∶2∶3;③∠A=90°+∠B;④∠A=∠B=∠C,能確定△ABC是直角三角形的條件有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有理數a,b,c在數軸上的位置如圖所示,且表示數a的點、數b的點與原點的距離相等.
(1)用“>”“<”或“=”填空:b______0,a+b______0,a-c______0,b-c______0;
(2)|b-1|+|a-1|=________;
(3)化簡:|a+b|+|a-c|-|b|+|b-c|.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知直線AB∥CD.
(1)如圖1,直接寫出∠ABE,∠CDE和∠BED之間的數量關系是 .
(2)如圖2,BF,DF分別平分∠ABE,∠CDE,那么∠BFD和∠BED有怎樣的數量關系?請說明理由.
(3)如圖3,點E在直線BD的右側,BF,DF仍平分∠ABE,∠CDE,請直接寫出∠BFD和∠BED的數量關系 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市某綠色無公害蔬菜基地有甲、乙兩種植戶,他們們種植了A、B兩類蔬菜,兩種植戶種植的兩類蔬菜的種植面積與總收入如下表:
種植戶 | 種植A類蔬菜面積(單位:畝) | 種植B類蔬菜面積(單位:畝) | 總收入(單位:元) |
甲 | 1 | 3 | 13500 |
乙 | 2 | 2 | 13000 |
說明:不同種植戶種植的同類蔬菜每畝平均收入相等
(1)求A、B兩類蔬菜每畝平均收入各是多少元?
(2)今年甲、乙兩種植戶聯合種植,計劃合租50畝地用來種植A、B兩類蔬菜,為了使總收入不低于16400元,問聯合種植最多可以種植A類蔬菜多少畝?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知O為直線AB上一點,∠COE是直角,OF平分∠AOE.
(1)如圖①,若∠COF=34°,則∠BOE=________;若∠COF=n°,則∠BOE=________;∠BOE與∠COF的數量關系為________________.
(2)當射線OE繞點O逆時針旋轉到如圖②的位置時,(1)中∠BOE與∠COF的數量關系是否仍然成立?請說明理由.
(3)在圖③中,若∠COF=65°,在∠BOE的內部是否存在一條射線OD,使得2∠BOD與∠AOF的和等于∠BOE與∠BOD的差的一半?若存在,請求出∠BOD的度數;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com