【題目】閱讀下面材料:

學(xué)習(xí)了三角形全等的判定方法(即“SAS”“ASA”“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聰繼續(xù)對(duì)兩個(gè)三角形滿足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等的情形進(jìn)行研究

小聰將命題用符號(hào)語言表示為:在ABCDEF中,AC=DF,BC=EF,B=E

小聰?shù)奶骄糠椒ㄊ菍?duì)∠B分為直角、鈍角、銳角三種情況進(jìn)行探究.

第一種情況:當(dāng)∠B 是直角時(shí),如圖1,ABCDEF中,AC=DF,BC=EF,B=E=90°,根據(jù)“HL”定理,可以知道RtABCRtDEF

第二種情況:當(dāng)∠B 是銳角時(shí),如圖2,BC=EF,B=E90°,在射線EM上有點(diǎn)D,使DF=AC,畫出符合條件的點(diǎn)D,則ABCDEF的關(guān)系是   ;

A.全等 B.不全等 C.不一定全等

第三種情況:當(dāng)∠B是鈍角時(shí),如圖3,在ABCDEF中,AC=DF,BC=EFB=E90°.過點(diǎn)CAB邊的垂線交AB延長(zhǎng)線于點(diǎn)M;同理過點(diǎn)FDE邊的垂線交DE延長(zhǎng)線于N,根據(jù)“ASA”,可以知道CBM≌△FEN,請(qǐng)補(bǔ)全圖形,進(jìn)而證出ABC≌△DEF

【答案】第二種情況選C,理由見解析;第三種情況補(bǔ)全圖見解析,證明見解析.

【解析】試題分析第二種情況選C.畫出圖形即可判斷.

第三種情況先證明△CMA≌△FND推出AM=DN,推出AB=DE,再證明△ABC≌△DEF即可.

試題解析第二種情況選C

理由由題意滿足條件的點(diǎn)D有兩個(gè)故△ABC和△DEF不一定全等(如圖所示)

故選C

第三種情況補(bǔ)全圖.

證明由△CBM≌△FEN,CM=FN,BD=EN

RtCMARtFND中,∵,∴△CMA≌△FND,AM=DNAB=DE.在ABC和△DEF中,∵∴△ABC≌△DEF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一架方梯AB長(zhǎng)25米,如圖所示,斜靠在一面上:

(1)若梯子底端離墻7米,這個(gè)梯子的頂端距地面有多高?

(2)在(1)的條件下,如果梯子的頂端下滑了4米,那么梯子的底端在水平方向滑動(dòng)了幾米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=k1x﹣1的圖象經(jīng)過A(0,﹣1)、B(1,0)兩點(diǎn),與反比例函數(shù)y= 的圖象在第一象限內(nèi)的交點(diǎn)為M,若△OBM的面積為1.

(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)在x軸上是否存在點(diǎn)P,使AM⊥PM?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由;
(3)x軸上是否存在點(diǎn)Q,使△QBM∽△OAM?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O是直線AB上任一點(diǎn),射線OD和射線OE分別平分AOCBOC

(1)填空:與AOE互補(bǔ)的角是

(2)若AOD=36°,求DOE的度數(shù);

(3)當(dāng)AOD=x°時(shí),請(qǐng)直接寫出DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀思考

我們知道,在數(shù)軸上|a|表示數(shù)a所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離,這是絕對(duì)值的幾何意義,由此我們可進(jìn)一步地來研究數(shù)軸上任意兩個(gè)點(diǎn)之間的距離,一般地,如果數(shù)軸上兩點(diǎn)A、B 對(duì)立的數(shù)用a,b表示,那么這兩個(gè)點(diǎn)之間的距離AB=|a﹣b|.也可以用兩點(diǎn)中右邊的點(diǎn)所表示數(shù)的減去左邊的點(diǎn)所表示的數(shù)來計(jì)算,例如:數(shù)軸上P,Q兩點(diǎn)表示的數(shù)分別是﹣1和2,那么P,Q兩點(diǎn)之間的距離就是 PQ=2﹣(﹣1)=3.

啟發(fā)應(yīng)用

如圖,點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為a,點(diǎn)B對(duì)應(yīng)的數(shù)為b,且a、b滿足|a+3|+(b﹣2)2=0

(1)求線段AB的長(zhǎng);

(2)如圖,點(diǎn)C在數(shù)軸上對(duì)應(yīng)的數(shù)為x,且x是方程2x+1=x﹣8的解,

①求線段BC的長(zhǎng);

②在數(shù)軸上是否存在點(diǎn)P使PA+PB=BC?若存在,直接寫出點(diǎn)P對(duì)應(yīng)的數(shù):若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖某商場(chǎng)為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,并規(guī)定:每購買500元商品,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),如果轉(zhuǎn)盤停止后,指針上對(duì)準(zhǔn)500、20、100、50、10的區(qū)域,顧客就可以分別獲得500元、200元、100元、50元、10元的購物券一張。(轉(zhuǎn)盤等分成20)

(1)小華購物450,他獲得購物券的概率是多少?

(2)小麗購物600,那么她獲得100元以上(包括100)券的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題.

程大位明代商人,珠算發(fā)明家被稱為珠算之父、卷尺之父.少年時(shí),讀書極為廣博對(duì)數(shù)學(xué)頗感興趣,60歲時(shí)完成其杰作《直指算法統(tǒng)宗》簡(jiǎn)稱《算法統(tǒng)宗》).

在《算法統(tǒng)宗》里記載了一道趣題一百饅頭一百僧,大僧三個(gè)更無爭(zhēng),小僧三人分一個(gè),大小和尚各幾丁意思是100個(gè)和尚分100個(gè)饅頭,如果大和尚1人分3個(gè),小和尚3人分1個(gè)正好分完.試問大、小和尚各多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知D△ABC的邊AB上一點(diǎn),CE∥AB,DEAC于點(diǎn)O,且OA=OC,猜想線段CD與線段AE的大小關(guān)系和位置關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一列數(shù),第一個(gè)數(shù)為x1=1,第二個(gè)數(shù)為x2=3,從第三個(gè)數(shù)開始依次為x3,x4,…,xn,….從第二個(gè)數(shù)開始,每個(gè)數(shù)是左右相鄰兩個(gè)數(shù)和的一半,如x2,x3.

(1)求x3,x4,x5的值,并寫出計(jì)算過程;

(2)根據(jù)(1)的結(jié)果,推測(cè)x9等于多少;

(3)探索這一列數(shù)的規(guī)律,猜想第k(k為正整數(shù))個(gè)數(shù)xk等于多少.

查看答案和解析>>

同步練習(xí)冊(cè)答案