【題目】如圖,△ABC內接于⊙O,AD是⊙O直徑,E是CB延長線上一點,且∠BAE=∠C.
(1)求證:直線AE是⊙O的切線;
(2)若∠BAE=30°,⊙O的半徑為2,求陰影部分的面積;
(3)若EB=AB,cos∠E=,AE=24,求EB的長及⊙O的半徑.
【答案】(1)見解析;(2) π﹣;(3)BE=20,半徑:.
【解析】
(1)連接BD,利用圓周角定理得到∠ABD=90°,則∠D+∠DAB=90°,再利用等量代換證明∠DAE=90°,然后根據(jù)切線的判定定理即可得到結論;
(2)連接OB,先計算出∠OAB=60°,得到△AOB為等邊三角形,所以∠AOB=60°,然后利用陰影部份的面積=S扇形AOB﹣S△AOB進行計算;
(3)作BH⊥AE于H,利用等腰三角形的性質得AH=EH=AE=12,∠E=∠BAE.在Rt△BEH中利用余弦的定義可計算出BE=20,則AB=20,由于∠D=∠C=∠BAE=∠E,則cos∠D=.在Rt△ABD中,cos∠D==,設BD=3x,AD=5x,易得4x=20,解出x得到AD的長,從而得到⊙O的半徑.
(1)連接BD,如圖,∵AD為直徑,∴∠ABD=90°,∴∠D+∠DAB=90°.
∵∠C=∠D,∠BAE=∠C,∴∠BAE+∠DAB=90°,即∠DAE=90°,∴AD⊥AE,∴直線AE是⊙O的切線;
(2)連接OB,如圖,∵∠BAE=30°,∴∠OAB=60°,而OA=OB,∴△AOB為等邊三角形,∴∠AOB=60°,∴陰影部份的面積=S扇形AOB﹣S△AOB=﹣×22=π﹣;
(3)作BH⊥AE于H,如圖,∵EB=AB,∴AH=EH=AE=12,∠E=∠BAE.在Rt△BEH中,∵cos∠E==,∴BE=12×=20,∴AB=BE=20.
∵∠D=∠C=∠BAE=∠E,∴cos∠D=.在Rt△ABD中,cos∠D==,設BD=3x,AD=5x,∴AB=4x,即4x=20,解得:x=5,∴AD=25,∴⊙O的半徑為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸正半軸相交于、兩點,與軸相交于點,對稱軸為直線,且,則下列結論:
①;②;③;④關于的方程有一個根為,其中正確的結論個數(shù)有( )
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點D是直線AB上的一動點(不和A,B重合),BE⊥CD于E,交直線AC于F.
(1)點D在邊AB上時,試探究線段BD,AB和AF的數(shù)量關系,并證明你的結論;
(2)點D在AB的延長線上時,試探究線段BD,AB和AF的數(shù)量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,在以為原點的平面直角坐標系中,拋物線與軸交于、兩點,與軸交于點,連接,,直線過點且平行于軸,,
求拋物線對應的二次函數(shù)的解析式;
若為拋物線上一動點,是否存在直線使得點到直線的距離與的長恒相等?若存在,求出此時的值;
如圖,若、為上述拋物線上的兩個動點,且,線段的中點為,求點縱坐標的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解八年級學生的視力情況,對八年級的學生進行了一次視力調查,并將調查數(shù)據(jù)進行統(tǒng)計整理,繪制出如下頻數(shù)分布表和頻數(shù)分布直方圖的一部分.
視力 | 頻數(shù)(人) | 頻率 |
4.0≤x<4.3 | 20 | 0.1 |
4.3≤x<4.6 | 40 | 0.2 |
4.6≤x<4.9 | 70 | 0.35 |
4.9≤x<5.2 | a | 0.3 |
5.2≤x<5.5 | 10 | b |
(1)在頻數(shù)分布表中,a= ,b= ;
(2)將頻數(shù)分布直方圖補充完整;
(3)若視力在4.6以上(含4.6)均屬正常,求視力正常的人數(shù)占被調查人數(shù)的百分比是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國魏晉時期數(shù)學家劉徽編撰的最早一部測量數(shù)學著作《海島算經(jīng)》中有一題:今有望海島,立兩表齊高三丈,前后相去千步,令后表與前表參相直.從前表卻行一百二十三步,人目著地,取望島峰,與表末參合.從后表卻行一百二十七步,人目著地,取望島峰,亦與表末參合.問島高幾何?
譯文:今要測量海島上一座山峰AH的高度,在B處和D處樹立標桿BC和DE,標桿的高都是3丈,B和D兩處相隔1000步(1丈=10尺,1步=6尺),并且AH,CB和DE在同一平面內.從標桿BC后退123步的F處可以看到頂峰A和標桿頂端C在同一直線上;從標桿ED后退127步的G處可以看到頂峰A和標桿頂端E在同一直線上.則山峰AH的高度是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,過⊙C上一點P作⊙C的切線l.當入射光線照射在點P處時,產(chǎn)生反射,且滿足:反射光線與切線l的夾角和入射光線與切線l的夾角相等,點P稱為反射點.規(guī)定:光線不能“穿過”⊙C,即當入射光線在⊙C外時,只在圓外進行反射;當入射光線在⊙C內時,只在圓內進行反射.特別地,圓的切線不能作為入射光線和反射光線.光線在⊙C外反射的示意圖如圖1所示,其中∠1=∠2.
(1)自⊙C內一點出發(fā)的入射光線經(jīng)⊙C第一次反射后的示意圖如圖2所示,P1是第1個反射點.請在圖2中作出光線經(jīng)⊙C第二次反射后的反射光線和反射點P3;
(2)當⊙O的半徑為1時,如圖3:
①第一象限內的一條入射光線平行于y軸,且自⊙O的外部照射在圓上點P處,此光線經(jīng)⊙O反射后,反射光線與x軸平行,則反射光線與切線l的夾角為___________°;
②自點M(0,1)出發(fā)的入射光線,在⊙O內順時針方向不斷地反射.若第1個反射點是P1,第二個反射點是P2,以此類推,第8個反射點是P8恰好與點M重合,則第1個反射點P1的坐標為___________;
(3)如圖4,點M的坐標為(0,2),⊙M的半徑為1.第一象限內自點O出發(fā)的入射光線經(jīng)⊙M反射后,反射光線與坐標軸無公共點,求反射點P的縱坐標的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的拋物線是二次函數(shù)(a≠0)的圖象,則下列結論:①abc>0;②b+2a=0;③拋物線與x軸的另一個交點為(4,0);④a+c>b;⑤3a+c<0.其中正確的結論有
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com