【題目】如圖所示的拋物線是二次函數(shù)(a≠0)的圖象,則下列結(jié)論:①abc>0;②b+2a=0;③拋物線與x軸的另一個交點(diǎn)為(4,0);④a+c>b;⑤3a+c<0.其中正確的結(jié)論有
A. 5個 B. 4個 C. 3個 D. 2個
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AD是⊙O直徑,E是CB延長線上一點(diǎn),且∠BAE=∠C.
(1)求證:直線AE是⊙O的切線;
(2)若∠BAE=30°,⊙O的半徑為2,求陰影部分的面積;
(3)若EB=AB,cos∠E=,AE=24,求EB的長及⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題探究:如圖①,在四邊形ABCD中,AB∥CD,E是BC的中點(diǎn),AE是∠BAD的平分線,則線段AB,AD,DC之間的等量關(guān)系為 ;
(2)方法遷移:如圖②,在四邊形ABCD中,AB∥CD,AF與DC的延長線交于點(diǎn)F,E是BC的中點(diǎn),AE是∠BAF的平分線,試探究線段AB,AF,CF之間的等量關(guān)系,并證明你的結(jié)論;
(3)聯(lián)想拓展:如圖③,AB∥CF,E是BC的中點(diǎn),點(diǎn)D在線段AE上,∠EDF=∠BAE,試探究線段AB,DF,CF之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在的正北方向,在的正東方向,且.某一時刻,甲車從出發(fā),以的速度朝正東方向行駛,與此同時,乙車從出發(fā),以的速度朝正北方向行駛.小時后,位于點(diǎn)處的觀察員發(fā)現(xiàn)甲、乙兩車之間的夾角為,即,此時,甲、乙兩人相距的距離為( )
A. 90km B. 50 km C. 20 km D. 100km
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶市是著名的山城,許多美麗的建筑建在山上,如圖,劉老師為了測量小山項(xiàng)一建筑物的高度,和潘老師一起攜帶測量裝備前往測量.劉老師在山腳下的處測得建筑物頂端的仰角為,山坡的坡度,潘老師在處測得建筑物頂端的仰角為.若此時劉老師與潘老師的距離,求建筑物的高度.,,,結(jié)果精確到
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】任何一個正整數(shù)n都可以進(jìn)行這樣的分解:n=s×t(s,t是正整數(shù),且s≤t),如果p×q在n的所有這種分解中兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解,并規(guī)定:、例如18可以分解成1×18,2×9,3×6這三種,這時就有.給出下列關(guān)于F(n)的說法:(1);(2);(3)F(27)=3;(4)若n是一個整數(shù)的平方,則F(n)=1.其中正確說法的有_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象與x軸交于點(diǎn)A(-1, 0),與y軸交于點(diǎn)C(0,-5),且經(jīng)過點(diǎn)D(3,-8).
(1)求此二次函數(shù)的解析式和頂點(diǎn)坐標(biāo);
(2)請你寫出一種平移的方法,使平移后拋物線的頂點(diǎn)落在原點(diǎn)處,并寫出平移后拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在圓內(nèi)接四邊形ABCD中,CD為∠BCA外角的平分線,F為弧AD上一點(diǎn),BC=AF,延長DF與BA的延長線交于E.
⑴求證△ABD為等腰三角形.
⑵求證ACAF=DFFE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長都為1,△ABC的頂點(diǎn)都在格點(diǎn)上(網(wǎng)格線的交點(diǎn)).
(1)請?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,使點(diǎn)A坐標(biāo)為(﹣1,2),點(diǎn)B的坐標(biāo)為(﹣5,2);(畫出直角坐標(biāo)系)
(2)點(diǎn)C的坐標(biāo)為( , )(直接寫出結(jié)果)
(3)把△ABC先向下平移6個單位后得到對應(yīng)的△A1B1C1,再將△A1B1C1沿y軸翻折至△A2B2C2;
①請?jiān)谧鴺?biāo)系中畫出△A2B2C2;
②若點(diǎn)P(m,n)是△ABC邊上任意一點(diǎn),P2是△A2B2C2邊上與P對應(yīng)的點(diǎn),寫出點(diǎn)P2的坐標(biāo)為( , );(直接寫出結(jié)果)
③試在y軸上找一點(diǎn)Q,使得點(diǎn)Q到A2,C2兩點(diǎn)的距離之和最小,此時,QA2+QC2的長度之和最小值為 .(在圖中畫出點(diǎn)Q的位置,并直接寫出最小值答案)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com