【題目】學校與圖書館在同一條筆直道路上,甲從學校去圖書館,乙從圖書館回學校,甲、乙兩人都勻速步行且同時出發(fā),乙先到達目的地兩人之間的距離y(米)與時間t(分鐘)之間的函數(shù)關系如圖所示

1)根據(jù)圖象信息,當t   分鐘時甲乙兩人相遇,甲的速度為   /分鐘;

2)求出線段AB所表示的函數(shù)表達式

3)甲、乙兩人何時相距400米?

【答案】124,40;(2y40t40≤t≤60);(3)出發(fā)20分鐘或28分鐘后,甲、乙兩人何時相距400

【解析】

1)根據(jù)圖象信息,當t24分鐘時甲乙兩人相遇,甲60分鐘行駛2400米,根據(jù)速度=路程÷時間可得甲的速度;

2)由t24分鐘時甲乙兩人相遇,可得甲、乙兩人的速度和為2400÷24100/分鐘,減去甲的速度得出乙的速度,再求出乙從圖書館回學校的時間即A點的橫坐標,用A點的橫坐標乘以甲的速度得出A點的縱坐標,再將A、B兩點的坐標代入,利用待定系數(shù)法即可求出線段AB所表示的函數(shù)表達式;

3)分相遇前后兩種情況列方程解答即可.

解:(1)根據(jù)圖象信息,當t24分鐘時甲乙兩人相遇,甲的速度為2400÷6040(米/分鐘).

故答案為2440;

2)∵甲從學校去圖書館,乙從圖書館回學校,甲、乙兩人都勻速步行且同時出發(fā),t24分鐘時甲乙兩人相遇,

∴甲、乙兩人的速度和為2400÷24100/分鐘,

∴乙的速度為1004060(米/分鐘).

乙從圖書館回學校的時間為2400÷6040分鐘,

40×401600

A點的坐標為(40,1600).

設線段AB所表示的函數(shù)表達式為ykt+b

A40,1600),B60,2400),

,解得

∴線段AB所表示的函數(shù)表達式為y40t40≤t≤60);

3)設出發(fā)t分鐘后兩人相距400米,根據(jù)題意得

40+60t2400400或(40+60t2400+400,

解得t20t28

答:出發(fā)20分鐘或28分鐘后,甲、乙兩人何時相距400米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,P是對角線AC上任一點(不與A,C重合),連接BP,DP,過PPECDADE,過PPFADCDF,連接EF.

(1)求證:ABP≌△ADP;

(2)BP=EF,求證:四邊形EPFD是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形是平行四邊形,點邊上運動(點不與點,重合)

1)如圖1,當點運動到邊的中點時,連接,若平分,證明:;

2)如圖2,過點且交的延長線于點,連接.若,,在線段上是否存在一點,使得四邊形是菱形?若存在,請說明當發(fā),點分別在線段,上什么位置時四邊形是菱形,并證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,將含30°的三角尺的直角頂點C落在第二象限.其斜邊兩端點A、B分別落在x軸、y軸上且AB=12cm

(1)若OB=6cm.

①求點C的坐標;

②若點A向右滑動的距離與點B向上滑動的距離相等,求滑動的距離;

(2)點C與點O的距離的最大值是多少cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,過點O作弦AD的垂線交半圓O于點E,交AC于點C,使BED=C.

(1)判斷直線AC與圓O的位置關系,并證明你的結論;

(2)若AC=8,cosBED=,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經過O,A兩點,且頂點在BC邊上,對稱軸交BE于點F,點D,E的坐標分別為(3,0),(0,1).

(1)求拋物線的解析式;

(2)猜想EDB的形狀并加以證明;

(3)點M在對稱軸右側的拋物線上,點Nx軸上,請問是否存在以點A,F(xiàn),M,N為頂點的四邊形是平行四邊形?若存在,請求出所有符合條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將數(shù)軸按如圖所示從某一點開始折出一個等邊三角形ABC,設點A表示的數(shù)為x﹣3,點B表示的數(shù)為2x+1,點C表示的數(shù)為﹣4,若將ABC向右滾動,則x的值等于_____,數(shù)字2012對應的點將與ABC的頂點_____重合.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A90°ADBC,AB4,點P是線段AD上的動點,連接BP,CP,若BPC周長的最小值為16,則BC的長為( 。

A.5B.6C.8D.10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知MON=P為射線OM上的點,OP=1.

(1)如圖1,,A,B均為射線ON上的點,OA=1,OBOA,△PBC為等邊三角形,且O,C兩點位于直線PB的異側,連接AC

依題意將圖1補全;

判斷直線ACOM的位置關系并加以證明;

(2)若,Q為射線ON上一動點QO不重合),PQ為斜邊作等腰直角PQR,使O,R兩點位于直線PQ的異側,連接OR根據(jù)(1)的解答經驗,直接寫出POR的面積.

1 備用圖

查看答案和解析>>

同步練習冊答案