【題目】在△ABC中,AB=10,AC=2 ,BC邊上的高AD=6,則另一邊BC等于( )
A.10
B.8
C.6或10
D.8或10
【答案】C
【解析】解:根據(jù)題意畫出圖形,如圖所示,
如圖1所示,AB=10,AC=2 ,AD=6,
在Rt△ABD和Rt△ACD中,
根據(jù)勾股定理得:BD= =8,CD= =2,
此時BC=BD+CD=8+2=10;
如圖2所示,AB=10,AC=2 ,AD=6,
在Rt△ABD和Rt△ACD中,
根據(jù)勾股定理得:BD= =8,CD= =2,此時BC=BD﹣CD=8﹣2=6,
則BC的長為6或10.
所以答案是:C.
【考點精析】本題主要考查了勾股定理的概念的相關(guān)知識點,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,以BC邊為直徑作⊙O交AB邊于點D,過點D作DE⊥AC于點E.
(1)求證:DE是⊙O的切線;
(2)若⊙O的半徑等于 ,cosB= ,求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,P為AD邊上一點,沿直線BP將△ABP翻折至△EBP(點A的對應(yīng)點為點E),PE與CD相交于點O,且OE=OD.
(1)求證:PE=DH;
(2)若AB=10,BC=8,求DP的長.
【答案】(1)見解析;(2).
【解析】試題分析:(1) 先證明△DOP≌△EOH,再利用等量代換得到PE=DH.
(2) 設(shè)DP=x, Rt△BCH中,先用 x表示三角形三邊,利用勾股定理列式解方程.
試題解析:
(1)解:證明:∵OD=OE,∠D=∠E=90°,∠DOP=∠EOH,
∴△DOP≌△EOH,
∴OP=OH,
∴PO+OE=OH+OD,
∴PE=DH.
(2)解:設(shè)DP=x,則EH=x,BH=10﹣x,
CH=CD﹣DH=CD﹣PE=10﹣(8﹣x)=2+x,
∴在Rt△BCH中,BC2+CH2=BH2
(2+x)2+82=(10﹣x)2,
∴x=,
∴DP=.
【題型】解答題
【結(jié)束】
25
【題目】某文教店老板到批發(fā)市場選購A,B兩種品牌的繪圖工具套裝,每套A品牌套裝進價比B品牌每套套裝進價多2.5元,已知用200元購進A種套裝的數(shù)量是用75元購進B種套裝數(shù)量的2倍.
(1)求A,B兩種品牌套裝每套進價分別為多少元?
(2)若A品牌套裝每套售價為13元,B品牌套裝每套售價為9.5元,店老板決定,購進B品牌的數(shù)量比購進A品牌的數(shù)量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過120元,則最少購進A品牌工具套裝多少套?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=﹣x2﹣2x+3與x軸交于A、B兩點,將這條拋物線的頂點記為C,連接AC、BC,則tan∠CAB的值為( )
A.
B.
C.
D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD的對角線相交于點O,AC= ,CD=1,
(1)尺規(guī)作圖:作∠ABC的平分線交AD于點E,連結(jié)CE;
(2)判斷線段BE與CE的關(guān)系,并證明你的判斷.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB和直線CD相交于O點,OE⊥OD,OF平分∠AOE,∠BOD=26°
(1)寫出∠COB的鄰補角。
(2)求∠COF的度數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系中,點滿足,軸于點.
(1)點的坐標為 ,點的坐標為 ;
(2)如圖1,若點在軸上,連接,使,求出點的坐標;
(3)如圖2,是線段所在直線上一動點,連接,平分,交直線于點,作,當點在直線上運動過程中,請?zhí)骄?/span>與的數(shù)量關(guān)系,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com