【題目】一段筆直的公路AC長(zhǎng)20千米,途中有一處休息點(diǎn)B,AB長(zhǎng)15千米,甲、乙兩名長(zhǎng)跑愛(ài)好者同時(shí)從點(diǎn)A出發(fā),甲以15千米/時(shí)的速度勻速跑至點(diǎn)B,原地休息半小時(shí)后,再以10千米/時(shí)的速度勻速跑至終點(diǎn)C;乙以12千米/時(shí)的速度勻速跑至終點(diǎn)C,下列選項(xiàng)中,能正確反映甲、乙兩人出發(fā)后2小時(shí)內(nèi)運(yùn)動(dòng)路程y(千米)與時(shí)間x(小時(shí))函數(shù)關(guān)系的圖象是( 。
A.
B.
C.
D.

【答案】A
【解析】解;由題意,甲走了1小時(shí)到了B地,在B地休息了半個(gè)小時(shí),2小時(shí)正好走到C地,乙走了 小時(shí)到了C地,在C地休息了 小時(shí).
由此可知正確的圖象是A.
故選A.
分別求出甲乙兩人到達(dá)C地的時(shí)間,再結(jié)合已知條件即可解決問(wèn)題.本題考查函數(shù)圖象、路程.速度、時(shí)間之間的關(guān)系,解題的關(guān)鍵是理解題意求出兩人到達(dá)C地的時(shí)間,屬于中考常考題型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是一圓錐的左視圖,根據(jù)圖中所標(biāo)數(shù)據(jù),圓錐側(cè)面展開(kāi)圖的扇形圓心角的大小為( 。

A.90°
B.120°
C.135°
D.150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC為矩形ABCD的對(duì)角線,將邊AB沿AE折疊,使點(diǎn)B落在AC上的點(diǎn)M處,將邊CD沿CF折疊,使點(diǎn)D落在AC上的點(diǎn)N處.

(1)求證:四邊形AECF是平行四邊形;
(2)若AB=6,AC=10,求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】不等式組 的解集在數(shù)軸上表示為(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對(duì)角線AC為⊙O的直徑,過(guò)點(diǎn)C作AC的垂線交AD的延長(zhǎng)線于點(diǎn)E,點(diǎn)F為CE的中點(diǎn),連接DB,DC,DF.

(1)求∠CDE的度數(shù);
(2)求證:DF是⊙O的切線;
(3)若AC=2 DE,求tan∠ABD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點(diǎn),C、D是l2上的兩點(diǎn),某人在點(diǎn)A處測(cè)得∠CAB=90°,∠DAB=30°,再沿AB方向前進(jìn)20米到達(dá)點(diǎn)E(點(diǎn)E在線段AB上),測(cè)得∠DEB=60°,求C、D兩點(diǎn)間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DE是⊙O的直徑,弦AB⊥CD,垂足為C,若AB=6,CE=1,則OC= , CD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,銳角△ABC的兩條高BD、CE相交于點(diǎn)O,且OB=OC.
(1)求證:△ABC是等腰三角形;
(2)判斷點(diǎn)O是否在∠BAC的角平分線上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為2的正方形ABCD中,P為AB的中點(diǎn),Q為邊CD上一動(dòng)點(diǎn),設(shè)DQ=t(0≤t≤2),線段PQ的垂直平分線分別交邊AD、BC于點(diǎn)M、N,過(guò)Q作QE⊥AB于點(diǎn)E,過(guò)M作MF⊥BC于點(diǎn)F.
(1)當(dāng)t≠1時(shí),求證:△PEQ≌△NFM;
(2)順次連接P、M、Q、N,設(shè)四邊形PMQN的面積為S,求出S與自變量t之間的函數(shù)關(guān)系式,并求S的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案