【題目】如圖,AC為矩形ABCD的對角線,將邊AB沿AE折疊,使點B落在AC上的點M處,將邊CD沿CF折疊,使點D落在AC上的點N處.
(1)求證:四邊形AECF是平行四邊形;
(2)若AB=6,AC=10,求四邊形AECF的面積.
【答案】
(1)
證明:∵折疊,
∴AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,
∴∠ANF=90°,∠CME=90°,
∵四邊形ABCD為矩形,
∴AB=CD,AD∥BC,
∴AM=CN,
∴AM﹣MN=CN﹣MN,
即AN=CM,
在△ANF和△CME中,
,
∴△ANF≌△CME(ASA),
∴AF=CE,
又∵AF∥CE,
∴四邊形AECF是平行四邊形;
(2)
解:∵AB=6,AC=10,∴BC=8,
設CE=x,則EM=8﹣x,CM=10﹣6=4,
在Rt△CEM中,
(8﹣x)2+42=x2,
解得:x=5,
∴四邊形AECF的面積的面積為:ECAB=5×6=30
【解析】(1)首先由矩形的性質和折疊的性質證得AB=CD,AD∥BC,∠ANF=90°,∠CME=90°,易得AN=CM,可得△ANF≌△CME(ASA),由平行四邊形的判定定理可得結論;(2)由AB=6,AC=10,可得BC=8,設CE=x,則EM=8﹣x,CM=10﹣6=4,在Rt△CEM中,利用勾股定理可解得x,由平行四邊形的面積公式可得結果.本題主要考查了折疊的性質、矩形的性質、平行四邊形的判定定理和勾股定理等,綜合運用各定理是解答此題的關鍵.
科目:初中數學 來源: 題型:
【題目】已知正方形ABCD的邊長為1,點P為正方形內一動點,若點M在AB上,且滿足△PBC∽△PAM,延長BP交AD于點N,連結CM.
(1)如圖一,若點M在線段AB上,求證:AP⊥BN;AM=AN;
(2)①如圖二,在點P運動過程中,滿足△PBC∽△PAM的點M在AB的延長線上時,AP⊥BN和AM=AN是否成立?(不需說明理由)
②是否存在滿足條件的點P,使得PC= ?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解“數學思想作文對學習幫助有多大?”研究員隨機抽取了一定數量的高校大一學生進行了問卷調查,并將調查得到的數據用下面的扇形圖和如表來表示(圖、表都沒制作完成).
選項 | 幫助很大 | 幫助較大 | 幫助不大 | 幾乎沒有幫助 |
人數 | a | 540 | 270 | b |
根據上面圖、表提供的信息,解決下列問題:
(1)這次共有多少名學生參與了問卷調查?
(2)求a、b的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某社區(qū)青年志愿者小分隊年齡情況如下表所示:
年齡(歲) | 18 | 19 | 20 | 21 | 22 |
人數 | 2 | 5 | 2 | 2 | 1 |
則這12名隊員年齡的眾數、中位數分別是( 。
A.2,20歲
B.2,19歲
C.19歲,20歲
D.19歲,19歲
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,二次函數y=ax2+bx的圖象過點A(﹣1,3),頂點B的橫坐標為1.
(1)求這個二次函數的表達式;
(2)點P在該二次函數的圖象上,點Q在x軸上,若以A、B、P、Q為頂點的四邊形是平行四邊形,求點P的坐標;
(3)如圖3,一次函數y=kx(k>0)的圖象與該二次函數的圖象交于O、C兩點,點T為該二次函數圖象上位于直線OC下方的動點,過點T作直線TM⊥OC,垂足為點M,且M在線段OC上(不與O、C重合),過點T作直線TN∥y軸交OC于點N.若在點T運動的過程中, 為常數,試確定k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,分別以直角三角形三邊為邊向外作等邊三角形,面積分別為S1、S2、S3;如圖2,分別以直角三角形三個頂點為圓心,三邊長為半徑向外作圓心角相等的扇形,面積分別為S4、S5、S6 . 其中S1=16,S2=45,S5=11,S6=14,則S3+S4=( )
A.86
B.64
C.54
D.48
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某數學興趣小組研究我國古代《算法統(tǒng)宗》里這樣一首詩:我問開店李三公,眾客都來到店中,一房七客多七客,一房九客一房空.詩中后兩句的意思是:如果每一間客房住7人,那么有7人無房可;如果每一間客房住9人,那么就空出一間房.
(1)求該店有客房多少間?房客多少人?
(2)假設店主李三公將客房進行改造后,房間數大大增加.每間客房收費20錢,且每間客房最多入住4人,一次性定客房18間以上(含18間),房費按8折優(yōu)惠.若詩中“眾客”再次一起入住,他們如何訂房更合算?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一段筆直的公路AC長20千米,途中有一處休息點B,AB長15千米,甲、乙兩名長跑愛好者同時從點A出發(fā),甲以15千米/時的速度勻速跑至點B,原地休息半小時后,再以10千米/時的速度勻速跑至終點C;乙以12千米/時的速度勻速跑至終點C,下列選項中,能正確反映甲、乙兩人出發(fā)后2小時內運動路程y(千米)與時間x(小時)函數關系的圖象是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,放置在水平桌面上的臺燈的燈臂AB長為40cm,燈罩BC長為30cm,底座厚度為2cm,燈臂與底座構成的∠BAD=60°.使用發(fā)現(xiàn),光線最佳時燈罩BC與水平線所成的角為30°,此時燈罩頂端C到桌面的高度CE是多少cm? (結果精確到0.1cm,參考數據: ≈1.732)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com