【題目】如圖,放置在水平桌面上的臺(tái)燈的燈臂AB長(zhǎng)為40cm,燈罩BC長(zhǎng)為30cm,底座厚度為2cm,燈臂與底座構(gòu)成的∠BAD=60°.使用發(fā)現(xiàn),光線最佳時(shí)燈罩BC與水平線所成的角為30°,此時(shí)燈罩頂端C到桌面的高度CE是多少cm? (結(jié)果精確到0.1cm,參考數(shù)據(jù): ≈1.732)
【答案】解:由題意得:AD⊥CE,過點(diǎn)B作BM⊥CE,BF⊥EA, ∵燈罩BC長(zhǎng)為30cm,光線最佳時(shí)燈罩BC與水平線所成的角為30°,
∵CM⊥MB,即三角形CMB為直角三角形,
∴sin30°= = ,
∴CM=15cm,
在直角三角形ABF中,sin60°= ,
∴ = ,
解得:BF=20 ,
又∠ADC=∠BMD=∠BFD=90°,
∴四邊形BFDM為矩形,
∴MD=BF,
∴CE=CM+MD+DE=CM+BF+ED=15+20 +2≈51.6cm.
答:此時(shí)燈罩頂端C到桌面的高度CE是51.6cm.
【解析】根據(jù)sin30°= ,求出CM的長(zhǎng),根據(jù)sin60°= ,求出BF的長(zhǎng),得出CE的長(zhǎng),即可得出CE的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC為矩形ABCD的對(duì)角線,將邊AB沿AE折疊,使點(diǎn)B落在AC上的點(diǎn)M處,將邊CD沿CF折疊,使點(diǎn)D落在AC上的點(diǎn)N處.
(1)求證:四邊形AECF是平行四邊形;
(2)若AB=6,AC=10,求四邊形AECF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,銳角△ABC的兩條高BD、CE相交于點(diǎn)O,且OB=OC.
(1)求證:△ABC是等腰三角形;
(2)判斷點(diǎn)O是否在∠BAC的角平分線上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于反比例函數(shù)y= ,下列說法正確的是( )
A.圖象經(jīng)過點(diǎn)(1,﹣1)
B.圖象位于第二、四象限
C.圖象是中心對(duì)稱圖形
D.當(dāng)x<0時(shí),y隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是他在家用剪刀展開了一個(gè)長(zhǎng)方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識(shí),回答下列問題:
(1)小明總共剪開了_______條棱.
(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過折疊以后,仍然可以還原成一個(gè)長(zhǎng)方體紙盒,你認(rèn)為他應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請(qǐng)你幫助小明在①上補(bǔ)全.
(3)小明說:他所剪的所有棱中,最長(zhǎng)的一條棱是最短的一條棱的5倍.現(xiàn)在已知這個(gè)長(zhǎng)方體紙盒的底面是一個(gè)正方形,并且這個(gè)長(zhǎng)方體紙盒所有棱長(zhǎng)的和是880cm,求這個(gè)長(zhǎng)方體紙盒的體積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】徐州至上海的鐵路里程為650km.從徐州乘“C”字頭列車A,“D”字頭列車B都可到達(dá)上海,已知A車的平均速度為B車的2倍,且行駛時(shí)間比B車少2.5h.
(1)設(shè)A車的平均速度是xkm/h,根據(jù)題意,可列分式方程:;
(2)求A車的平均速度及行駛時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為2的正方形ABCD中,P為AB的中點(diǎn),Q為邊CD上一動(dòng)點(diǎn),設(shè)DQ=t(0≤t≤2),線段PQ的垂直平分線分別交邊AD、BC于點(diǎn)M、N,過Q作QE⊥AB于點(diǎn)E,過M作MF⊥BC于點(diǎn)F.
(1)當(dāng)t≠1時(shí),求證:△PEQ≌△NFM;
(2)順次連接P、M、Q、N,設(shè)四邊形PMQN的面積為S,求出S與自變量t之間的函數(shù)關(guān)系式,并求S的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)計(jì)算:22+(﹣1)4+( ﹣2)0﹣|﹣3|;
(2)先化簡(jiǎn),再求值:(4ab3﹣8a2b2)÷4ab+(2a+b)(2a﹣b),其中a=2,b=1.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com