【題目】已知一次函數(shù)y=﹣ x+6的圖象與坐標(biāo)軸交于A、B點(如圖),AE平分∠BAO,交x軸于點E.
(1)求點B的坐標(biāo);
(2)求直線AE的表達(dá)式;
(3)過點B作BF⊥AE,垂足為F,連接OF,試判斷△OFB的形狀,并求△OFB的面積.
【答案】
(1)解:當(dāng)y=﹣ x+6=0時,x=8,
∴點B的坐標(biāo)為(8,0).
(2)解:當(dāng)x=0時,y=﹣ x+6=6,
∴點A的坐標(biāo)為(0,6),
∴OA=6,OB=8,
∴AB= =10.
∵AE平分∠BAO,交x軸于點E,
∴ = ,
∴OE= BE.
∵OE+BE=OB=8,
∴OE=3,BE=5,
∴點E的坐標(biāo)為(3,0).
設(shè)直線AE的表達(dá)式為y=kx+b,
將A(0,6)、E(3,0)代入y=kx+b,
,解得: ,
∴直線AE的表達(dá)式為y=﹣2x+6.
(3)解:過點F作FG⊥x軸于點G,如圖所示.
∵BF⊥AE,
∴∠BFE=90°=∠AOE.
∵∠AEO=∠BEF,
∴△AOE∽△BFE,
∴ = = .
∵OA=6,OE=3,
∴AE=3 .
∵BE=5,
∴BF=2 ,EF= .
同理可得:△BEF∽△BFG,
∴BG=4,F(xiàn)G=2.
∵OB=8,
∴OG=4=BG,
∴△OFB為等腰三角形,
∴S△OFB= OBFG=8.
【解析】(1)將y=0代入直線AB的表達(dá)式中求出x值,此題得解;(2)利用一次函數(shù)圖象上點的坐標(biāo)特征求出點A的坐標(biāo),結(jié)合勾股定理可求出AB的長度,再利用角平分線的性質(zhì)即可求出點E的坐標(biāo),根據(jù)點A、E的坐標(biāo)利用待定系數(shù)法即可求出直線AE的表達(dá)式;(3)過點F作FG⊥x軸于點G,由BF⊥AE可得出△AOE∽△BFE,根據(jù)相似三角形的性質(zhì)可得出BF、EF的長度,同理可得出△BEF∽△BFG,根據(jù)相似三角形的性質(zhì)可得出BG、FG的長度,結(jié)合OB=8即可得出OG=BG,由此可得出△OFB為等腰三角形,再根據(jù)三角形的面積公式可得出△OFB的面積.
【考點精析】掌握相似三角形的性質(zhì)是解答本題的根本,需要知道對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,鐵路上A、B兩點相距25km,C、D為兩村莊,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,現(xiàn)在要在鐵路AB上建一個土特產(chǎn)品收購站E,使得C、D兩村到E站的距離相等,則E站應(yīng)建在距A站多少千米處?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一動點從原點O出發(fā),按向上,向右,向下,向右的方向不斷地移動,每移動一個單位,得到點A1(0,1),A2(1,1),A3(1,0),A4(2,0),那么A2020坐標(biāo)為( )
A.(2020,1)B.(2020,0)C.(1010,1)D.(1010,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將下列不等式化為“x>a”或“x<a”的形式:
(1)2x>3x-4;
(2)5x-1<14;
(3)-x<-3;
(4) x<x+1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解今年初四學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,某校在第一輪模擬測試后,對初四全體同學(xué)的數(shù)學(xué)成績作了統(tǒng)計分析,繪制如下圖表:請結(jié)合圖表所給出的信息解答系列問題:
成績 | 頻數(shù) | 頻率 |
優(yōu)秀 | 45 | b |
良好 | a | 0.3 |
合格 | 105 | 0.35 |
不合格 | 60 | c |
(1)該校初四學(xué)生共有多少人?
(2)求表中a,b,c的值,并補(bǔ)全條形統(tǒng)計圖.
(3)初四(一)班數(shù)學(xué)老師準(zhǔn)備從成績優(yōu)秀的甲、乙、丙、丁四名同學(xué)中任意抽取兩名同學(xué)做學(xué)習(xí)經(jīng)驗介紹,求恰好選中甲、乙兩位同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,下列條件中,能判斷直線L1∥L2的是( )
A. ∠2=∠3 B. ∠l=∠3 C. ∠4+∠5=180 D. ∠2=∠4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2017年“KFC”乒乓球賽進(jìn)校園活動中,某校甲、乙兩隊進(jìn)行決賽,比賽規(guī)則規(guī)定:兩隊之間進(jìn)行3局比賽,3局比賽必須全部打完,只要贏2局的隊為獲勝隊,假如甲、乙兩隊之間每局比賽輸贏的機(jī)會相同,且乙隊已經(jīng)贏得了第1局比賽.
(1)列表或畫樹狀圖表示乙隊所有比賽結(jié)果的可能性;
(2)求乙隊獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從A地將一批物品勻速運(yùn)往B地,已知甲出發(fā)0.5h后乙開始出發(fā),如圖,線段OP、MN分別表示甲、乙兩車離A地的距離S(km)與時間t(h)的關(guān)系,請結(jié)合圖中的信息解決如下問題:
(1)計算甲、乙兩車的速度及a的值;
(2)乙車到達(dá)B地后以原速立即返回.
①在圖中畫出乙車在返回過程中離A地的距離S(km)與時間t(h)的函數(shù)圖象;
②請問甲車在離B地多遠(yuǎn)處與返程中的乙車相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠A=90°,點D是BC的中點,點E,F分別在AB,AC上,且∠EDF=90°,連接EF,求證:BE2+CF2=EF2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com