【題目】如圖,鐵路上A、B兩點相距25km,C、D為兩村莊,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,現(xiàn)在要在鐵路AB上建一個土特產(chǎn)品收購站E,使得C、D兩村到E站的距離相等,則E站應(yīng)建在距A站多少千米處?
【答案】∵DA⊥AB
∴∠AED+∠D=900
∵DE⊥CE
∴∠AED+∠BEC=900
∴∠D=∠BEC
在ADE和BEC中
∴
∴AE=BC=10 ∴E站應(yīng)建在距A站10千米處。
【解析】
試題
設(shè)AE=km,則BE=km,在Rt△AED和Rt△BEC中,分別用勾股定理表達出:DE和CE,由DE=CE就可建立方程求解.
試題解析:
設(shè)AE=km,則由題意可得:BE=km,
∵DA⊥AB于點A,CB⊥AB于點B,
∴∠DAE=∠EBC=90°,
∴DE2=AE2+AD2=+225,CE2=BE2+BC2=+100,
又∵DE=CE,
∴,解得:.
即E站應(yīng)建在距A站10km處.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,且AB=2cm,點P為弧AB上一動點(不與A,B重合), = ,過點D作⊙O的切線交PB的延長線于點C.
(1)試證明AB∥CD;
(2)填空: ①當BP=1cm時,PD=cm;
②當BP=cm時,四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)與x軸分別交于A(x1 , 0)、
B(x2 , 0)兩點,直線y2=2x+t經(jīng)過點A.
(1)已知A、B兩點的橫坐標分別為3、﹣1.
①當a=1時,直接寫出拋物線y1和直線y2相應(yīng)的函數(shù)表達式;
②如圖,已知拋物線y1在3<x<4這一段位于直線y2的下方,在5<x<6這一段位于直線y2的上方,求a的取值范圍;
(2)若函數(shù)y=y1+y2的圖象與x軸僅有一個公共點,探求x2﹣x1與a之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點,將△ABP沿BP翻折至△EBP,PE與CD相交于點O,BE與CD相交于點G,且OE=OD,則AP的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了豐富學(xué)生的大課間活動,準備購進一批跳繩,已知2根短繩和1根長繩共需56元,1根短繩和2根長繩共需82元.
(1)求每根短繩和每根長繩的售價各是多少元?
(2)學(xué)校準備購進這兩種跳繩共50根,并且短繩的數(shù)量不超過長繩數(shù)量的2倍,總費用不超過1020元,請設(shè)計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,已知AB=BC=CA=4 cm,點P、Q分別從B、C兩點同時出發(fā),其中點P沿BC向終點C運動,速度為1 cm/s;點Q沿CA、AB向終點B運動,速度為2 cm/s,設(shè)它們運動的時間為x(s),當x=__________,△BPQ是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某市第四次黨代會上,提出了建設(shè)美麗城市決勝全面小康的奮斗目標,為策應(yīng)市委號召,學(xué)校決定改造校園內(nèi)的一小廣場,如圖是該廣場的平面示意圖,它是由6個正方形拼成的長方形,已知中間最小的正方形A的邊長是1米.
若設(shè)圖中最大正方形B的邊長是x米,請用含x的代數(shù)式分別表示出正方形F、E和C的邊長;
觀察圖形的特點可知,長方形相對的兩邊是相等的如圖中的MN和請根據(jù)這個等量關(guān)系,求出x的值;
現(xiàn)沿著長方形廣場的四條邊鋪設(shè)下水管道,由甲、乙2個工程隊單獨鋪設(shè)分別需要10天、15天完成兩隊合作施工2天后,因甲隊另有任務(wù),余下的工程由乙隊單獨施工,試問還要多少天完成?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七年級學(xué)生在5 名教師的帶領(lǐng)下去動物園秋游,動物園的門票為每 人40 元,現(xiàn)有兩種優(yōu)惠方案,甲方案:帶隊教師免費,學(xué)生按8 折收費;乙 方案:師生都7.5 折收費.
(1)若有m 名學(xué)生,用含m 的式子表示兩種優(yōu)惠方案各需多少元?
(2)當m=70 時,采用哪種方案優(yōu)惠?
(3)當m=100 時,采用哪種方案優(yōu)惠?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=﹣ x+6的圖象與坐標軸交于A、B點(如圖),AE平分∠BAO,交x軸于點E.
(1)求點B的坐標;
(2)求直線AE的表達式;
(3)過點B作BF⊥AE,垂足為F,連接OF,試判斷△OFB的形狀,并求△OFB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com