【題目】如圖,P的圓心為P(﹣3,2),半徑為3,直線MN過點(diǎn)M(5,0)且平行于y軸,點(diǎn)N在點(diǎn)M的上方.

(1)在圖中作出P關(guān)于y軸對(duì)稱的P′.根據(jù)作圖直接寫出P′與直線MN的位置關(guān)系.

(2)若點(diǎn)N在(1)中的P′上,求PN的長.

【答案】1作圖見解析,P′與直線MN相交;(2)PN=

【解析】分析:在平面直角坐標(biāo)系中,易知點(diǎn)P′的坐標(biāo)為(3,2),⊙P′的半徑和⊙P的半徑相等為3,這樣⊙P′就被確定,因?yàn)辄c(diǎn)N在直線MN上,直線MN(5,0)點(diǎn)且平行于y軸,直線PP′⊥MN,這樣利用勾股定理就可求得PN的長度.

解:(1)如圖,⊙P′的圓心為(3,2),半徑為3,與直線MN相交.

(2)連接PP′,交直線MN于點(diǎn)A,

點(diǎn)PP′的縱坐標(biāo)相同,∴PP′∥x軸,

∵M(jìn)N∥y軸,∴PP′⊥MN,

點(diǎn)A的坐標(biāo)為(5,2)

Rt△P′NA中,P′N3,P′A532.

AN,

RtPAN中,PA5(3)8,AN

PN.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)的延長線上,且.過點(diǎn),與的垂線交于點(diǎn).

1)求證:;

2)請(qǐng)找出線段、、之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店準(zhǔn)備購進(jìn)甲、乙兩種文具袋,已知甲文具袋每個(gè)的進(jìn)價(jià)比乙每個(gè)進(jìn)價(jià)多2元,經(jīng)了解,用120元購進(jìn)的甲文具袋與用90元購進(jìn)的乙文具袋的數(shù)量相等.

1)分別求甲、乙兩種文具袋每個(gè)的進(jìn)價(jià)是多少元?

2)若該文具店用1200元全部購進(jìn)甲、乙兩種文具袋,設(shè)購進(jìn)甲x個(gè),乙y個(gè).

y關(guān)于x的關(guān)系式.

甲每個(gè)的售價(jià)為10元,乙每個(gè)的售價(jià)為9元,且在進(jìn)貨時(shí),甲的購進(jìn)數(shù)量不少于60個(gè),若這批文具袋全部售完可獲利w元,求w關(guān)于x的關(guān)系式,并說明如何進(jìn)貨該文具店所獲利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),D是△ABC外的一點(diǎn),∠AOB=110°,∠BOC,△BOC≌△ADC,∠OCD=60°,連接OD

1)求證:△OCD是等邊三角形.

2)當(dāng)α=150°時(shí),試判斷△AOD的形狀(按角分類),并說明理由.

3)求∠OAD的度數(shù).

4)探究:當(dāng)α=   時(shí),△AOD是等腰三角形.(不必說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90,∠A=60,CD是斜邊AB上的高,若AD=3cm,則斜邊AB的長為(

A.3cmB.6cmC.9cmD.12cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知:如圖①,直線MN⊥直線PQ,垂足為O,點(diǎn)A在射線OP上,點(diǎn)B在射線OQ上(A、B不與O點(diǎn)重合),點(diǎn)C在射線ON上,過點(diǎn)C作直線,點(diǎn)D在點(diǎn)C的左邊。

1)若BD平分∠ABC,則_____°;

2)如圖②,若,作∠CBA的平分線交OCE,交ACF,試說明;

3)如圖③,若∠ADC=DAC,點(diǎn)B在射線OQ上運(yùn)動(dòng),∠ACB的平分線交DA的延長線于點(diǎn)H.在點(diǎn)B運(yùn)動(dòng)過程中的值是否變化?若不變,求出其值;若變化,求出變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是某公園一塊草坪上的自動(dòng)旋轉(zhuǎn)噴水裝置,這種旋轉(zhuǎn)噴水裝置的旋轉(zhuǎn)角度為240°,它的噴灌區(qū)是一個(gè)扇形.小濤同學(xué)想了解這種裝置能夠噴灌的草坪面積,他測(cè)量出了相關(guān)數(shù)據(jù),并畫出了示意圖.如圖2,A,B兩點(diǎn)的距離為18米,求這種裝置能夠噴灌的草坪面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)珠海環(huán)保城市建設(shè),我市某污水處理公司不斷改進(jìn)污水處理設(shè)備,新設(shè)備每小時(shí)處理污水量是原系統(tǒng)的1.5倍,原來處理1200m3污水所用的時(shí)間比現(xiàn)在多用10小時(shí).

(1)原來每小時(shí)處理污水量是多少m2

(2)若用新設(shè)備處理污水960m3,需要多長時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠MON90°,正方形ABCD的頂點(diǎn)AB分別在OM、ON上,AB13,OB5,EAC上一點(diǎn),且∠EBC=∠CBN,直線DEON交于點(diǎn)F

1)求證BEDE;

2)判斷DFON的位置關(guān)系,并說明理由;

3)△BEF的周長為

查看答案和解析>>

同步練習(xí)冊(cè)答案