【題目】如圖,∠MON90°,正方形ABCD的頂點(diǎn)A、B分別在OMON上,AB13,OB5,EAC上一點(diǎn),且∠EBC=∠CBN,直線(xiàn)DEON交于點(diǎn)F

1)求證BEDE;

2)判斷DFON的位置關(guān)系,并說(shuō)明理由;

3)△BEF的周長(zhǎng)為

【答案】1)見(jiàn)解析;(2DFON,理由見(jiàn)解析;(324

【解析】

1)根據(jù)正方形的性質(zhì)證明△BCE≌△DCE即可;

2)由第一題所得條件和已知條件可推出∠EDC=∠CBN,再利用90°的代換即可證明;

3)過(guò)D點(diǎn)作DG垂直于OM,交點(diǎn)為G,結(jié)合已知條件推出DFBF的長(zhǎng),再根據(jù)第一題結(jié)論得出△BEF的周長(zhǎng)等于DFBF即可得出答案.

解:(1)證明:∵四邊形ABCD正方形,

CA平分∠BCD,BCDC

∴∠BCE=∠DCE45°,

CECE,

∴△BCE≌△DCESAS);

BEDE;

2DFON,理由如下:

∵△BCE≌△DCE,

∴∠EBC=∠EDC

∵∠EBC=∠CBN,

∴∠EDC=∠CBN

∵∠EDC+190°,∠1=∠2

∴∠2+CBN90°,

∴∠EFB90°,即DFON;

3)過(guò)D點(diǎn)作DG垂直于OM,交點(diǎn)為G

∵四邊形ABCD是正方形,

AD=AB,∠BAD=90°,

∴∠DAG+BAO=90°,

∵∠ABO+BAO=90°,

∴∠DAG=ABO,

又∵∠MON=90°,DGOM,

∴△ADG≌△ABO,

DM=AOGA=OB=5,

AB=13,OB=5,

根據(jù)勾股定理可得AO=12,

由(2)可知DFON,

又∵∠MON=90°,DGOM,

∴四邊形OFDM是矩形,

OF=DG=AO=12,DF=OM=17,

由(1)可知BEDE,

∴△BEF的周長(zhǎng)=DF+BF=17+12-5=24

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P的圓心為P(﹣3,2),半徑為3,直線(xiàn)MN過(guò)點(diǎn)M(5,0)且平行于y軸,點(diǎn)N在點(diǎn)M的上方.

(1)在圖中作出P關(guān)于y軸對(duì)稱(chēng)的P′.根據(jù)作圖直接寫(xiě)出P′與直線(xiàn)MN的位置關(guān)系.

(2)若點(diǎn)N在(1)中的P′上,求PN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形的對(duì)角線(xiàn),相交于點(diǎn),將沿所在直線(xiàn)折疊,得到

1)求證:四邊形是菱形;

2)若,當(dāng)四邊形是正方形時(shí),等于多少?

3)若,邊上的動(dòng)點(diǎn),邊上的動(dòng)點(diǎn),那么的最小值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:sin(﹣x)=﹣sinx, cos(﹣x)=cosx,sinx+y=sinxcosy+cosxsiny,則下列各式不成立的是(

A. cos45°= B. sin75°=

C. sin2x=2sinxcosx D. sinx﹣y=sinxcosy﹣cosxsiny

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某自行車(chē)制造廠(chǎng)開(kāi)發(fā)了一款新式自行車(chē),計(jì)劃6月份生產(chǎn)安裝600,由于抽調(diào)不出足夠的熟練工來(lái)完成新式自行車(chē)的安裝工廠(chǎng)決定招聘一些新工人他們經(jīng)過(guò)培訓(xùn)后也能獨(dú)立進(jìn)行安裝.調(diào)研部門(mén)發(fā)現(xiàn):1名熱練工和2名新工人每日可安裝8輛自行車(chē);2名熟練工和3名新工人每日可安裝14輛自行車(chē)

(1)每名熟練工和新工人每日分別可以安裝多少輛自行車(chē)?

(2)如果工廠(chǎng)招聘n名新工人(0<n<10).使得招聘的新工人和抽調(diào)熟練工剛好能完成6月份(30的安裝任務(wù),那么工廠(chǎng)有哪幾種新工人的招聘方案?

(3)該自行車(chē)關(guān)于輪胎的使用有以下說(shuō)明本輪胎如安裝在前輪,安全行使路程為11千公里;如安裝在后輪,安全行使路程為9千公里.請(qǐng)問(wèn)一對(duì)輪胎能行使的最長(zhǎng)路程是多少千公里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知甲校原有1016人,乙校原有1028人,寒假期間甲、乙兩校人數(shù)變動(dòng)的原因只有轉(zhuǎn)出與轉(zhuǎn)入兩種,且轉(zhuǎn)出的人數(shù)比為13,轉(zhuǎn)入的人數(shù)比也為13.若寒假結(jié)束開(kāi)學(xué)時(shí)甲、乙兩校人數(shù)相同,問(wèn):乙校開(kāi)學(xué)時(shí)的人數(shù)與原有的人數(shù)相差多少?( )

A.6B.9C.12D.18

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某游泳館普通票價(jià)20/,暑假為了促銷(xiāo),新推出兩種優(yōu)惠卡

金卡售價(jià)600/每次憑卡不再收費(fèi)

銀卡售價(jià)150/,每次憑卡另收10

暑假普通票正常出售,兩種優(yōu)惠卡僅限暑假使用不限次數(shù).設(shè)游泳x次時(shí),所需總費(fèi)用為y

(1)分別寫(xiě)出選擇銀卡、普通票消費(fèi)時(shí),yx之間的函數(shù)關(guān)系式;

(2)在同一坐標(biāo)系中若三種消費(fèi)方式對(duì)應(yīng)的函數(shù)圖象如圖所示,請(qǐng)求出點(diǎn)A、B、C的坐標(biāo);

(3)請(qǐng)根據(jù)函數(shù)圖象,直接寫(xiě)出選擇哪種消費(fèi)方式更合算

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知BADBCE均為等腰直角三角形,∠BAD=BCE=90°,點(diǎn)MDE的中點(diǎn).過(guò)點(diǎn)EAD平行的直線(xiàn)交射線(xiàn)AM于點(diǎn)N

(1)當(dāng)A,B,C三點(diǎn)在同一直線(xiàn)上時(shí)(如圖1),求證:MAN的中點(diǎn);

(2)將圖1中BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)AB,E三點(diǎn)在同一直線(xiàn)上時(shí)(如圖2),求證:CAN為等腰直角三角形;

(3)將圖1中BCE繞點(diǎn)B旋轉(zhuǎn)到圖3的位置時(shí),(2)中的結(jié)論是否仍然成立?若成立,試證明之;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC在正方形網(wǎng)格中,若A(0,3),按要求回答下列問(wèn)題

(1)在圖中建立正確的平面直角坐標(biāo)系;

(2)根據(jù)所建立的坐標(biāo)系,寫(xiě)出BC的坐標(biāo);

(3)計(jì)算△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案