【題目】圖1是一組有規(guī)律的圖案,第①個(gè)圖集中有4個(gè)三角形,第②個(gè)圖案中有7個(gè)三角形,第③個(gè)圖案中有10個(gè)三角形,……依此規(guī)律,第⑦個(gè)圖案中有______個(gè)三角形,第n個(gè)圖案中有______個(gè)三角形.
【答案】22 (3n+1)
【解析】
由題意可知:第(1)個(gè)圖案有3+1=4個(gè)三角形,第(2)個(gè)圖案有3×2+1=7個(gè)三角形,第(3)個(gè)圖案有3×3+1=10個(gè)三角形,…依此規(guī)律,第n個(gè)圖案有(3n+1)個(gè)三角形.
∵第(1)個(gè)圖案有3+1=4個(gè)三角形,
第(2)個(gè)圖案有3×2+1=7個(gè)三角形,
第(3)個(gè)圖案有3×3+1=10個(gè)三角形,
…
∴第n個(gè)圖案有(3n+1)個(gè)三角形.
當(dāng)n=7時(shí),
3n+1=3×7+1=22,
故答案為:22,(3n+1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ACB=90°,D是AB的中點(diǎn),過(guò)點(diǎn)B作∠CBE=∠A,BE與射線CA相交于點(diǎn)E,與射線CD相交于點(diǎn)F.
(1)如圖,當(dāng)點(diǎn)E在線段CA上時(shí),求證:BE⊥CD;
(2)若BE=CD,那么線段AC與BC之間具有怎樣的數(shù)量關(guān)系?并證明你所得到的結(jié)論;
(3)若△BDF是等腰三角形,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為3,E、F分別是AB、BC邊上的點(diǎn),且∠EDF=45°,將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.若AE=1,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AE是∠BAC的角平分線,交BC于點(diǎn)E,DE∥AB交AC于點(diǎn)D.
(1)求證AD=ED;
(2)若AC=AB,DE=3,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(a,0),(b,0),且滿足現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD.
(1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積;
(2)在y軸上是否存在一點(diǎn)M,連接MA,MB,使S△MAB=S四邊形ABDC?若存在這樣一點(diǎn),求出點(diǎn)M的坐標(biāo);若不存在,試說(shuō)明理由;
(3)點(diǎn)P是射線BD上的一個(gè)動(dòng)點(diǎn)(不與B,D重合),連接PC,PA,求∠CPA與∠DCP、∠BAP之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在公路 MN 兩側(cè)分別有 A, A......A,七個(gè)工廠,各工廠與公路 MN(圖中粗線)之間有小公路連接.現(xiàn)在需要在公路 MN 上設(shè)置一個(gè)車站,選擇站址的標(biāo)準(zhǔn)是“使各工廠到車站的距離之和越小越好”.則下面結(jié)論中正確的是( ).
①車站的位置設(shè)在 C 點(diǎn)好于 B 點(diǎn);
②車站的位置設(shè)在 B 點(diǎn)與 C 點(diǎn)之問(wèn)公路上任何一點(diǎn)效果一樣;
③車站位置的設(shè)置與各段小公路的長(zhǎng)度無(wú)關(guān).
A.①B.②C.①③D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(規(guī)律探索)如圖所示的是由相同的小正方形組成的圖形,每個(gè)圖形的小正方形個(gè)數(shù)為Sn,n是正整數(shù).觀察下列圖形與等式之間的關(guān)系.
第一組:
第二組:
第三組:
(規(guī)律歸納)
(1)S7﹣S6= ;Sn﹣Sn﹣1= .
(2)S7+S6= ;Sn+Sn﹣1= .
(規(guī)律應(yīng)用)
(3)計(jì)算的結(jié)果為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(知識(shí)生成)我們已經(jīng)知道,多項(xiàng)式的乘法可以利用圖形的面積進(jìn)行解釋.例如利用圖1的面積可以得到,基于此,請(qǐng)解答下列問(wèn)題:
(1)請(qǐng)你寫出圖2所表示的一個(gè)等式:________.
(2)小明同學(xué)用圖3中張邊長(zhǎng)為的正方形,張邊長(zhǎng)為的正方形,張寬、長(zhǎng)分別為、的長(zhǎng)方形紙片拼出一個(gè)面積為長(zhǎng)方形,則________.
(知識(shí)遷移)(3)事實(shí)上,通過(guò)計(jì)算幾何圖形的體積也可以表示一些等式,圖4表示的是一個(gè)邊長(zhǎng)為的正方體挖去一個(gè)小長(zhǎng)方體后重新拼成一個(gè)新長(zhǎng)方體,請(qǐng)你根據(jù)圖4中圖形的變化關(guān)系,寫出一個(gè)代數(shù)恒等式:________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為2,.過(guò)B作BE//AC.
(1)求BE與AC之間的距離;
(2)F為BE上一點(diǎn),連接AF,過(guò)C作CG//AF交BE于G.若∠FAB=15°,
①依題意補(bǔ)全圖形;
②求證:四邊形AFGC是菱形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com