【題目】如圖,AB是直經(jīng),D是的中點(diǎn),DE⊥AC交AC的延長(zhǎng)線(xiàn)于E,⊙O的切線(xiàn)BF交AD的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)求證:DE是⊙O的切線(xiàn).
(2)試探究AE,AD,AB三者之間的等量關(guān)系.
(3)若DE=3,⊙O的半徑為5,求BF的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)AD2=AEAB;(3)BF=.
【解析】
(1)根據(jù)圓的性質(zhì)可知∠ACB=90°,從而結(jié)合DE⊥AC證明出BC∥DE,再利用點(diǎn)D是的中點(diǎn)得出∠COD=∠BOD,進(jìn)一步證明OD垂直平分BC,然后利用平行線(xiàn)性質(zhì)即可證明出結(jié)論;
(2)根據(jù)題意首先證明△AED∽△ADB,然后利用相似三角形性質(zhì)進(jìn)一步求解即可;
(3)根據(jù)題意可得四邊形CHDE為矩形,然后進(jìn)一步根據(jù)圖形結(jié)合勾股定理可得AE=AC+CE=9,最后通過(guò)證明△EAD∽△BAF進(jìn)一步求解即可.
如圖,連接OC,OD,BC,OD與BC交于點(diǎn)H,
(1)∵AB是直徑,
∴∠ACB=90°.
∵DE⊥AC于E,
∴∠E=90°,
∴∠ACB=∠E,
∴BC∥DE.
∵點(diǎn)D是的中點(diǎn),
∴,
∴∠COD=∠BOD,
又∵OC=OB,
∴OD垂直平分BC.
∵BC∥DE,
∴OD⊥DE,
∴DE是⊙O的切線(xiàn);
(2)AD2=AEAB.理由如下:
由(1)知,,
∴∠EAD=∠DAB.
∵AB為直徑,
∴∠ADB=∠E=90°,
∴△AED∽△ADB,
∴,
即AD2=AEAB;
(3)由(1)知,∠E=∠ECH=∠CHD=90°,
∴四邊形CHDE為矩形,
∴ED=CH=BH=3,
∴OH=,
∴CE=HD=OD﹣OH=5﹣4=1,AC=,
∴AE=AC+CE=9.
∵BF是⊙O的切線(xiàn),
∴∠FBA=∠E=90°,
又∵∠EAD=∠DAB,
∴△EAD∽△BAF,
∴,
即,
BF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(初步探究)
(1)如圖1,在四邊形ABCD中,∠B=∠C=90°,點(diǎn)E是邊BC上一點(diǎn),AB=EC,BE=CD,連接AE、DE.判斷△AED的形狀,并說(shuō)明理由.
(解決問(wèn)題)
(2)如圖2,在長(zhǎng)方形ABCD中,點(diǎn)P是邊CD上一點(diǎn),在邊BC、AD上分別作出點(diǎn)E、F,使得點(diǎn)F、E、P是一個(gè)等腰直角三角形的三個(gè)頂點(diǎn),且PE=PF,∠FPE=90°.要求:僅用圓規(guī)作圖,保留作圖痕跡,不寫(xiě)作法.
(拓展應(yīng)用)
(3)如圖3,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(2,0),點(diǎn)B(4,1),點(diǎn)C在第一象限內(nèi),若△ABC是等腰直角三角形,則點(diǎn)C的坐標(biāo)是 .
(4)如圖4,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(1,0),點(diǎn)C是y軸上的動(dòng)點(diǎn),線(xiàn)段CA繞著點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)90°至線(xiàn)段CB,CA=CB,連接BO、BA,則BO+BA的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O的切線(xiàn).
(2)若⊙O的半徑為3cm,∠C=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,C為圓外一點(diǎn),AC交⊙O于點(diǎn)D,BC2=CDCA,弦ED=弦BD,BE交AC于F.
(1)求證:BC為⊙O切線(xiàn);
(2)判斷△BCF的形狀并說(shuō)明理由;
(3)已知BC=15,CD=9,求tan∠ADE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 拋物線(xiàn)與軸交于點(diǎn)A(-1,0),頂點(diǎn)坐標(biāo)(1,n)與軸的交點(diǎn)在(0,2),(0,3)之間(包 含端點(diǎn)),則下列結(jié)論:①;②;③對(duì)于任意實(shí)數(shù)m,總成立;④關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為
A. 1 個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,下列結(jié)論:①;②;③;④.其中正確的結(jié)論是( )
A.①②B.①③C.①③④D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形的邊長(zhǎng)為,點(diǎn)為正方形的中心,點(diǎn)為邊上一動(dòng)點(diǎn),直線(xiàn)交于點(diǎn),過(guò)點(diǎn)作,垂足為點(diǎn),連接,則的最小值為( )
A.2B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2+c經(jīng)過(guò)點(diǎn)A(0,2)和點(diǎn)B(-1,0).
(1)求此拋物線(xiàn)的解析式;
(2)將此拋物線(xiàn)平移,使其頂點(diǎn)坐標(biāo)為(2,1),平移后的拋物線(xiàn)與x軸的兩個(gè)交點(diǎn)分別為點(diǎn)C,D(點(diǎn)C在點(diǎn)D的左邊),求點(diǎn)C,D的坐標(biāo);
(3)將此拋物線(xiàn)平移,設(shè)其頂點(diǎn)的縱坐標(biāo)為m,平移后的拋物線(xiàn)與x軸兩個(gè)交點(diǎn)之間的距離為n,若1<m<3,直接寫(xiě)出n的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com