【題目】(初步探究)

1)如圖1,在四邊形ABCD中,∠B=∠C90°,點E是邊BC上一點,ABEC,BECD,連接AE、DE.判斷△AED的形狀,并說明理由.

(解決問題)

2)如圖2,在長方形ABCD中,點P是邊CD上一點,在邊BCAD上分別作出點E、F,使得點F、E、P是一個等腰直角三角形的三個頂點,且PEPF,∠FPE90°.要求:僅用圓規(guī)作圖,保留作圖痕跡,不寫作法.

(拓展應用)

3)如圖3,在平面直角坐標系xOy中,已知點A2,0),點B4,1),點C在第一象限內(nèi),若△ABC是等腰直角三角形,則點C的坐標是   

4)如圖4,在平面直角坐標系xOy中,已知點A1,0),點Cy軸上的動點,線段CA繞著點C按逆時針方向旋轉(zhuǎn)90°至線段CB,CACB,連接BO、BA,則BO+BA的最小值是   

【答案】(1)△AED是等腰直角三角形;(2)詳見解析;(3)(1,2)、(3,3)、(,);(4

【解析】

1)證明△ABE≌△ECD SAS),即可求解;

2)如圖,以點D為圓心CP長為半徑作弧交AD于點F,以點C為圓心,DP長為半徑作弧交BE于點E,連接EF,EPFP,點EF即為所求;

3)分∠CAB=90°、∠ABC=90°、∠ACB=90°,三種情況求解即可;

4)求出Bm,1+m),則:BO+BA= BO+BA的值相當于求點Pm,m)到點M1,-1)和點N0,-1)的最小值,即可求解.

解:(1)△AED是等腰直角三角形,

證明:∵在△ABE和△ECD中,

,

∴△ABE≌△ECD SAS

AEDE,∠AEB=∠EDC,

∵在RtEDC中,∠C90°,

∴∠EDC+DEC90°

∴∠AEB+DEC90°

∵∠AEB+DEC+AED180°

∴∠AED90°

∴△AED是等腰直角三角形;

2)如圖,以點D為圓心CP長為半徑作弧交AD于點F,以點C為圓心,DP長為半徑作弧交BE于點E,連接EFEP,FP

∴點E、F即為所求;

3)如圖,當∠CAB90°,CAAB時,過點CCFAO于點F,過點BBEAO于點E,

∵點A2,0),點B4,1),

BE1,OA2OE4,∴AE2,

∵∠CAB90°,BEAO

∴∠CAF+BAE90°,∠BAE+ABE90°

∴∠CAF=∠ABE,且ACAB,∠AFC=∠AEB90°,

∴△ACF≌△BAEAAS

CFAE2AFBE1,

OFOAAF1

∴點C坐標為(1,2

如圖,當∠ABC90°,ABBC時,過點BBEOA,過點CCFBE

∵∠ABC90°,BEOA,

∴∠ABE+CBF90°,∠ABE+BAE90°,

∴∠BAE=∠CBF,且BCAB,∠AEB=∠CFB90°

∴△BCF≌△ABEAAS

BECF1,AEBF2,∴EF3

∴點C坐標為(3,3

如圖,當∠ACB90°CABC時,過點CCDOA于點D,過點BBFCD于點F,

∵∠ACD+BCF90°,∠ACD+CAD90°,

∴∠BCF=∠CAD,且ACBC,∠CDA=∠CFB,

∴△ACD≌△CBFAAS

CFADBFCDDE,

AD+DEAE2

2AD+CDAD+CF+DF2AD+1

DA,

CDOD,

∴點C坐標(,

綜上所述:點C坐標為:(12)、(3,3)、(

故答案為:(1,2)、(3,3)、(

4)如圖作BHOHH

設點C的坐標為(0,m),

由(1)知:OCHBm,OAHC1,

則點Bm1+m),

則:BO+BA

BO+BA的值,相當于求點Pm,m)到點M1,﹣1)和點N0,﹣1)的最小值,

相當于在直線yx上尋找一點Pmm),使得點PM0,﹣1),到N1,﹣1)的距離和最小,

M關于直線yx的對稱點M(﹣1,0),

易知PM+PNPM′+PNNM,

MN,

故:BO+BA的最小值為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD,AB=8,BC=4,將矩形沿AC折疊,B落在點B',則重疊部分的面積為()

A.12B.10C.8D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面內(nèi)已知,、分別是的平分線,則的度數(shù)是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】客運公司規(guī)定旅客可免費攜帶一定質(zhì)量的行李,當行李質(zhì)量超過規(guī)定時,需付的行李費y(元)是行李質(zhì)量xkg)的一次函數(shù),且部分對應關系如表所示.

xkg

30

40

50

y(元)

4

6

8

1)求y關于x的函數(shù)表達式;

2)求旅客最多可免費攜帶行李的質(zhì)量;

3)當行李費2≤y≤7(元)時,可攜帶行李的質(zhì)量xkg)的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:

我們知道,四邊形具有不穩(wěn)定性,容易變形,如圖1,一個矩形發(fā)生變形后成為一個平行四邊形,設這個平行四邊形相鄰兩個內(nèi)角中較小的一個內(nèi)角為α,我們把的值叫做這個平行四邊形的變形度.

1)若矩形發(fā)生變形后的平行四邊形有一個內(nèi)角是120度,則這個平行四邊形的變形是 

猜想證明:

2)設矩形的面積為S1,其變形后的平行四邊形面積為S2,試猜想S1,S2, 之間的數(shù)量關系,并說明理由;

拓展探究:

3)如圖2,在矩形ABCD中,EAD邊上的一點,且AB2=AEAD,這個矩形發(fā)生變形后為平行四邊形A1B1C1D1E1E的對應點,連接B1E1,B1D1,若矩形ABCD的面積為4 m0),平行四邊形A1B1C1D1的面積為2m0),試求∠A1E1B1+A1D1B1的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形在平面直角坐標系中,其中三個頂點的坐標分別為,,則第四個頂點的坐標為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知,

1)求證:,

2)若繞點B旋轉(zhuǎn)到外部,其他條件不變,則(1)中結論是否仍成立?請證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y1=kx+1(k<0)與直線y2=mx(m>0)的交點坐標為(m),則不等式組mx﹣2<kx+1<mx的解集為( 。

A. x> B. <x< C. x< D. 0<x<

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD的頂點在⊙O上,BD是⊙O的直徑,延長CD、BA 交于點E,連接AC、BD交于點F,作AHCE,垂足為點H,已知∠ADE=ACB.

(1)求證:AH是⊙O的切線;

(2)若OB=4,AC=6,求sinACB的值;

(3)若,求證:CD=DH.

查看答案和解析>>

同步練習冊答案