【題目】如圖所示,已知,,.
(1)求證:,.
(2)若繞點(diǎn)B旋轉(zhuǎn)到外部,其他條件不變,則(1)中結(jié)論是否仍成立?請(qǐng)證明.
【答案】(1)詳見解析;(2)成立,證明詳見解析
【解析】
(1)根據(jù)等式的性質(zhì),可得∠ABD與∠CBE的關(guān)系,根據(jù)全等三角形的判定與性質(zhì),可得AD與CE的關(guān)系,根據(jù)余角的性質(zhì),可得∠CGF與∠BCE的關(guān)系,根據(jù)直角三角形的判定,可得答案;
(2)根據(jù)等式的性質(zhì),可得∠ABD與∠CBE的關(guān)系,根據(jù)全等三角形的判定與性質(zhì),可得AD與CE的關(guān)系,根據(jù)余角的性質(zhì),可得∠DGF與∠FDG的關(guān)系,根據(jù)直角三角形的判定,可得答案.
(1)∵,
∴.
∴.
在和中,
∴.
∴,.
∵,,
∴.
∴.
∴.即.
(2)結(jié)論仍然成立.如圖所示.
∵
∴∠.
∴.
在和中,
∴.
∴,.
∵,,
∴,
∴.
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某中學(xué)數(shù)學(xué)活動(dòng)小組在學(xué)習(xí)了“利用三角函數(shù)測(cè)高”后,選定測(cè)量小河對(duì)岸一幢建筑物BC的高度,他們先在斜坡上的D處,測(cè)得建筑物頂端B的仰角為30°.且D離地面的高度DE=5m.坡底EA=30m,然后在A處測(cè)得建筑物頂端B的仰角是60°,點(diǎn)E,A,C在同一水平線上,求建筑物BC的高.(結(jié)果用含有根號(hào)的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著科技的進(jìn)步和網(wǎng)絡(luò)資源的豐富,在線學(xué)習(xí)已經(jīng)成為更多人的自主學(xué)習(xí)選擇.某校計(jì)劃為學(xué)生提供以下四類在線學(xué)習(xí)方式:在線閱讀、在線聽課、在線答題和在線討論.為了解學(xué)生需求,該校隨機(jī)對(duì)本校部分學(xué)生進(jìn)行了“你對(duì)哪類在線學(xué)習(xí)方式最感興趣”的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
(1)求本次調(diào)查的學(xué)生總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求扇形統(tǒng)計(jì)圖中“在線討論”對(duì)應(yīng)的扇形圓心角的度數(shù);
(3)該校共有學(xué)生3000人,請(qǐng)你估計(jì)該校對(duì)在線閱讀最感興趣的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(初步探究)
(1)如圖1,在四邊形ABCD中,∠B=∠C=90°,點(diǎn)E是邊BC上一點(diǎn),AB=EC,BE=CD,連接AE、DE.判斷△AED的形狀,并說明理由.
(解決問題)
(2)如圖2,在長(zhǎng)方形ABCD中,點(diǎn)P是邊CD上一點(diǎn),在邊BC、AD上分別作出點(diǎn)E、F,使得點(diǎn)F、E、P是一個(gè)等腰直角三角形的三個(gè)頂點(diǎn),且PE=PF,∠FPE=90°.要求:僅用圓規(guī)作圖,保留作圖痕跡,不寫作法.
(拓展應(yīng)用)
(3)如圖3,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(2,0),點(diǎn)B(4,1),點(diǎn)C在第一象限內(nèi),若△ABC是等腰直角三角形,則點(diǎn)C的坐標(biāo)是 .
(4)如圖4,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(1,0),點(diǎn)C是y軸上的動(dòng)點(diǎn),線段CA繞著點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)90°至線段CB,CA=CB,連接BO、BA,則BO+BA的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題:①全等三角形的對(duì)應(yīng)邊上的中線,高線,對(duì)應(yīng)角的平分線對(duì)應(yīng)相等;②兩邊和其中一邊上的中線(或第三邊上的中線)對(duì)應(yīng)相等的兩個(gè)三角形全等;③兩角和其中一角的角平分線(或第三角的角平分線)對(duì)應(yīng)相等的兩個(gè)三角形全等;④兩邊和其中一邊上的高線(或第三邊上的高線)對(duì)應(yīng)相等的兩個(gè)三角形全等.其中正確命題有________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張長(zhǎng)方形紙片分別沿著EP,FP對(duì)折,使點(diǎn)B落在點(diǎn)B,點(diǎn)C落在點(diǎn)C′.若點(diǎn)P,B′,C′不在一條直線上,且兩條折痕的夾角∠EPF=85°,則∠B′PC′=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線L1:y=ax2+bx+c(a,b,c是常數(shù),abc≠0)與直線L2都經(jīng)過y軸上的一點(diǎn)P,且拋物線L1與頂點(diǎn)Q在直線L2上,則稱此直線L2與該拋物線L1具有“一帶一路”關(guān)系,此時(shí),直線L2叫做拋物線L1的“帶線”,拋物線L1叫做直L2的“路線”.
(1) 若直線y=mx+1與拋物線y=x2-2x+n具有“一帶一路”關(guān)系,則m+n=_______.
(2) 若某“路線”L1的頂點(diǎn)在反比例函數(shù)的圖像上,它的“帶線” L2的解析式為y=2x-4,則此“路線”L的解析式為:_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)材料,解答問題
如圖,數(shù)軸上有點(diǎn),對(duì)應(yīng)的數(shù)分別是6,-4,4,-1,則兩點(diǎn)間的距離為;兩點(diǎn)間的距離為;兩點(diǎn)間的距離為;由此,若數(shù)軸上任意兩點(diǎn)分別表示的數(shù)是,則兩點(diǎn)間的距離可表示為.反之,表示有理數(shù)在數(shù)軸上的對(duì)應(yīng)點(diǎn)之間的距離,稱之為絕對(duì)值的幾何意義.
問題應(yīng)用1:
(1)如果表示-1的點(diǎn)和表示的點(diǎn)之間的距離是2,則點(diǎn)對(duì)應(yīng)的的值為___________;
(2)方程的解____________;
(3)方程的解______________ ;
問題應(yīng)用2:
如圖,若數(shù)軸上表示的點(diǎn)為.
(4)的幾何意義是數(shù)軸上_____________,當(dāng)__________,的值最小是____________;
(5)的幾何意義是數(shù)軸上_______,的最小值是__________,此時(shí)點(diǎn)在數(shù)軸上應(yīng)位于__________上;
(6)根據(jù)以上推理方法可求的最小值是___________,此時(shí)__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某月的月歷,圖中帶陰影的方框恰好蓋住四個(gè)數(shù),不改變帶陰影的方框的形狀大小,移動(dòng)方框的位置.
(1)若帶陰影的方框蓋住的4個(gè)數(shù)中,A表示的數(shù)是x,求這4個(gè)數(shù)的和(用含x的代數(shù)式表示);
(2)若帶陰影的方框蓋住的4個(gè)數(shù)之和為82,求出A表示的數(shù);
(3)這4個(gè)數(shù)之和可能為38或112嗎?如果可能,請(qǐng)求出這4個(gè)數(shù),如果不可能,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com