【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對(duì)應(yīng)值如下表:

x

-1

0

1

3

y

-1

3

5

3

下列結(jié)論:①c=3;②當(dāng)x>1時(shí),y的值隨x的增大而減小;③函數(shù)的最大值是5;④abc<0.其中正確的有(  )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

【答案】C

【解析】

代入(0,3)點(diǎn)求解C值,可判斷;由對(duì)稱坐標(biāo)點(diǎn)(0,3)(3,3)可知對(duì)稱軸為x=1.5,可判斷;對(duì)稱軸為x=1.5,觀察圖標(biāo)中數(shù)據(jù)可知,當(dāng)x<1.5時(shí),函數(shù)值隨x值的增大而增大,故此可知a<0,由于1<1.5,故函數(shù)最大值>5,可判斷③;由于,所以ab<0,再c=3,可判斷④.

代入(0,3)點(diǎn),則解得c=3,正確;由對(duì)稱坐標(biāo)點(diǎn)(0,3)(3,3)可知對(duì)稱軸為x=1.5,當(dāng)x>1時(shí),y的值隨x的增大是先增大再減小錯(cuò)誤;對(duì)稱軸為x=1.5,觀察圖標(biāo)中數(shù)據(jù)可知,當(dāng)x<1.5時(shí),函數(shù)值隨x值的增大而增大,故此可知a<0,由于1<1.5,故函數(shù)最大值>5,錯(cuò)誤;由于,所以ab<0,再c=3,abc<0,正確.

正確的是,故選擇C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖1,平面直角坐標(biāo)系中,拋物線y=ax2+bx+3x軸分別交于點(diǎn)A(﹣2,0),B(4,0),與y軸交于點(diǎn)C,點(diǎn)Dy軸負(fù)半軸上一點(diǎn),直線BD與拋物線y=ax2+bx+3在第三象限交于點(diǎn)E(﹣4,y)點(diǎn)F是拋物線y=ax2+bx+3上的一點(diǎn),且點(diǎn)F在直線BE上方,將點(diǎn)F沿平行于x軸的直線向右平移m個(gè)單位長(zhǎng)度后恰好落在直線BE上的點(diǎn)G處.

(1)求拋物線y=ax2+bx+3的表達(dá)式,并求點(diǎn)E的坐標(biāo);

(2)設(shè)點(diǎn)F的橫坐標(biāo)為x(﹣4<x<4),解決下列問題:

①當(dāng)點(diǎn)G與點(diǎn)D重合時(shí),求平移距離m的值;

②用含x的式子表示平移距離m,并求m的最大值;

(3)如圖2,過點(diǎn)Fx軸的垂線FP,交直線BE于點(diǎn)P,垂足為F,連接FD.是否存在點(diǎn)F,使FDPFDG的面積比為1:2?若存在,直接寫出點(diǎn)F的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李大媽加盟了紅紅全國(guó)燒烤連鎖店,該公司的宗旨是薄利多銷,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),當(dāng)羊肉串的單價(jià)定為元時(shí),每天能賣出串,在此基礎(chǔ)上,每加價(jià)元李大媽每天就會(huì)少賣出串,考慮了所有因素后李大媽的每串羊肉串的成本價(jià)為元,若李大媽每天銷售這種羊肉串想獲得利潤(rùn)是元,那么請(qǐng)問這種羊肉串應(yīng)怎樣定價(jià)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國(guó)家為支持大學(xué)生創(chuàng)業(yè),提供小額無息貸款,學(xué)生王芳享受政策無息貸款元用來代理品牌服裝的銷售.已知該品牌服裝進(jìn)價(jià)每件元,日銷售(件)與銷售價(jià)(元/件)之間的關(guān)系如圖所示(實(shí)線),每天付員工的工資每人每天元,每天應(yīng)支付其它費(fèi)用元.

求日銷售(件)與銷售價(jià)(元/件)之間的函數(shù)關(guān)系式;

若暫不考慮還貸,當(dāng)某天的銷售價(jià)為/件時(shí),收支恰好平衡(收入支出),求該店員工人數(shù);

若該店只有名員工,則該店至少需要多少天才能還清貸款,此時(shí),每件服裝的價(jià)格應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某市開展的環(huán)境創(chuàng)優(yōu)活動(dòng)中,某居民小區(qū)要在一塊靠墻(墻長(zhǎng)米)的空地上修建一個(gè)矩形花園,花園的一邊靠墻,另三邊用總長(zhǎng)為的柵欄圍成,若設(shè)花園平行于墻的一邊長(zhǎng)為,花園的面積為

之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

滿足條件的花園面積能達(dá)到嗎?若能,求出此時(shí)的值,若不能,說明理由;

根據(jù)中求得的函數(shù)關(guān)系式,判斷當(dāng)取何值時(shí),花園的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)批發(fā)商銷售成本為20/千克的某產(chǎn)品,根據(jù)物價(jià)部門規(guī)定:該產(chǎn)品每千克售價(jià)不得超過90元,在銷售過程中發(fā)現(xiàn)的售量y(千克)與售價(jià)x(元/千克)滿足一次函數(shù)關(guān)系,對(duì)應(yīng)關(guān)系如下表:

售價(jià)x(元/千克)


50

60

70

80


銷售量y(千克)


100

90

80

70


1)求yx的函數(shù)關(guān)系式;

2)該批發(fā)商若想獲得4000元的利潤(rùn),應(yīng)將售價(jià)定為多少元?

3)該產(chǎn)品每千克售價(jià)為多少元時(shí),批發(fā)商獲得的利潤(rùn)w(元)最大?此時(shí)的最大利潤(rùn)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,ADBC邊上的高,EAC的中點(diǎn),PAD上的一個(gè)動(dòng)點(diǎn),當(dāng)PCPE的和最小時(shí),∠CPE的度數(shù)是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)(是常數(shù),)在同一平面直角坐標(biāo)系的圖象可能是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是正方形ABCD的邊CD上一點(diǎn),以A為圓心,AB為半徑的弧與BE交于點(diǎn)F,則∠EFD=_____°.

查看答案和解析>>

同步練習(xí)冊(cè)答案