【題目】如圖,△ABC是等邊三角形,AD是BC邊上的高,E是AC的中點,P是AD上的一個動點,當PC與PE的和最小時,∠CPE的度數(shù)是_____________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按要求作圖:已知A(﹣2,1),B(﹣1,2),C(﹣3,4).
(1)畫出與三角形ABC關(guān)于y軸對稱的三角形A1B1C1;
(2)將三角形A1B1C1先向右平移2個單位,再向下平移1個單位,得到三角形A2B2C2,則三角形A2B2C2頂點坐標分別為:A2 B2 C2 ;
(3)若點P(a-1,b+2)與點A關(guān)于x軸對稱,則a= ,b= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C三點在⊙O上,直徑BD平分∠ABC,過點D作DE∥AB交弦BC于點E,過點D作⊙O的切線交BC的延長線于點F.
(1)求證:EF=ED;
(2)如果半徑為5,cos∠ABC=,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某小區(qū)要用籬笆圍成一矩形花壇,花壇的一邊用足夠長的墻,另外三邊所用的籬笆之和恰好為米.
(1)求矩形的面積(用表示,單位:平方米)與邊(用表示,單位:米)之間的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);怎樣圍,可使花壇面積最大?
(2)如何圍,可使此矩形花壇面積是平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ABC=90°,先把△ABC繞點B順時針旋轉(zhuǎn)90°至△DBE后,再把△ABC沿射線平移至△FEG,DE、FG相交于點H.
(1)判斷線段DE、FG的位置關(guān)系,并說明理由;
(2)連結(jié)CG,求證:四邊形CBEG是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過A(2,0),B(0,﹣6)兩點,
(1)求這個二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的對稱軸與x軸交于點C,連接BA,BC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(感知)如圖,點M是正方形ABCD的邊BC上一點,點N是CD延長線上一點,且MA⊥AN,易證△ABM≌△ADN,進而證得∠AMB=∠AND.
(應(yīng)用)如圖(1),在正方形ABCD中,點E、F分別在邊BC、CD上,且∠EAF=45°.求證:∠BEA=∠AEF.
(拓展)如圖(2),在四邊形ABCD中,AB=AD,∠BAD=90°,∠B+∠D=180°,點E,F分別在邊BC、CD上,∠EAF=45°.若∠BEA=50°,則∠AFD的大小為 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有兩個紙箱,每個紙箱內(nèi)各裝有4個材質(zhì)、大小都相同的乒乓球,其中一個紙箱內(nèi)4個小球上分別寫有1、2、3、4這4個數(shù),另一個紙箱內(nèi)4個小球上分別寫有5、6、7、8這4個數(shù),甲、乙兩人商定了一個游戲,規(guī)則是:從這兩個紙箱中各隨機摸出一個小球,然后把兩個小球上的數(shù)字相乘,若得到的積是2的倍數(shù),則甲得1分,若得到積是3的倍數(shù),則乙得2分.完成一次游戲后,將球分別放回各自的紙箱,搖勻后進行下一次游戲,最后得分高者勝出.。
(1)請你通過列表(或樹狀圖)分別計算乘積是2的倍數(shù)和3的倍數(shù)的概率;
(2)你認為這個游戲公平嗎?為什么?若你認為不公平,請你修改得分規(guī)則,使游戲?qū)﹄p方公平.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com