【題目】有四張背面一模一樣的卡片,卡片正面分別寫著一個函數(shù)關(guān)系式,分別是y=2x,y=x2﹣3(x>0),y= (x>0),y=﹣ (x<0),將卡片順序打亂后,隨意從中抽取一張,取出的卡片上的函數(shù)是y隨x的增大而增大的概率是( )
A.
B.
C.
D.1
【答案】C
【解析】解:函數(shù)y=2x,y=x2﹣3(x>0),y= (x>0),y=﹣ (x<0)中,有y=2x,y=x2﹣3(x>0),y=﹣ (x<0),是y隨x的增大而增大,
所以隨意從中抽取一張,取出的卡片上的函數(shù)是y隨x的增大而增大的概率是 .
所以答案是:C.
【考點精析】通過靈活運用正比例函數(shù)的圖象和性質(zhì)和反比例函數(shù)的性質(zhì),掌握正比函數(shù)圖直線,經(jīng)過一定過原點.K正一三負二四,變化趨勢記心間.K正左低右邊高,同大同小向爬山.K負左高右邊低,一大另小下山巒;性質(zhì):當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減; 當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形紙片ABCD中,∠A=60°,折疊菱形紙片ABCD,使點C落在DP(P為AB中點)所在的直線上,得到經(jīng)過點D的折痕DE,則∠DEC的大小為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是直線AB、CD的交點,∠AOE=∠COF=,
①如果∠EOF=,求∠AOD的度數(shù);
②如果∠EOF=,求∠AOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD.∠1=∠2,∠3=∠4,試說明 AD∥BE,請你將下面解答過程填寫完整.
解:∵AB∥CD,
∴∠4= ( )
∵∠3=∠4
∴∠3= (等量代換)
∵∠1=∠2
∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .
∴∠3= ( )
∴AD∥BE( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)的一點,連結(jié)PA,PB,PC,以BP為邊作∠PBQ=60°,且BQ=BP,連結(jié)CQ.若PA∶PB∶PC=3∶4∶5,連結(jié)PQ,試判斷△PQC的形狀( )
A. 直角三角形 B. 等腰三角形 C. 銳角三角形 D. 鈍角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知 AD⊥BC,垂足為點 D,EF⊥BC,垂足為點 F,∠1+∠2=180°, 請?zhí)顚憽?/span>CGD=∠CAB 的理由.
解:因為 AD⊥BC,EF⊥BC( )
所以∠ADC=90°,∠EFD=90°( )
得∠ADC=∠EFD( )
所以 AD//EF( )
得∠2+∠3=180° ( )
又因為∠1+∠2=180°(已知)
所以∠1=∠3( )
所以 DG//AB( )
所以∠CGD=∠CAB( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周長為36 cm,點P從點A開始沿AB邊向B點以每秒1cm的速度移動;點Q從點B沿BC邊向點C以每秒2cm的速度移動,如果同時出發(fā),則過3s時,△BPQ的面積為____cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,真命題是( )
A. 如果三角形三個角的度數(shù)比是3:4:5,那么這個三角形是直角三角形
B. 如果直角三角形兩直角邊的長分別為a和b,那么斜邊的長為a2+b2
C. 若三角形三邊長的比為1:2:3,則這個三角形是直角三角形
D. 如果直角三角形兩直角邊分別為a和b,斜邊為c,那么斜邊上的高h的長為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com