【題目】如圖,已知在中,平分,,則___________. (用含的代數(shù)式表示).

【答案】a-b

【解析】

CB上截取CA′=CA,連接DA′,根據(jù)SAS證明△ADC≌△A′DC,根據(jù)△ADC≌△A′DC,得出DA′=DA,∠CA′D=A,再證明DA′=A′B即可解決問題.

CB上截取CA′=CA,連接DA′,

CD平分∠ACB,

∴∠ACD=A′CD

△ADC△A′DC中,

∴△ADC≌△A′DCSAS),

DA′=DA,∠CA′D=A

∵∠A=2B,∠CA′D=B+A′DB,

∴∠A′DB=B,

BA′=A′D=AD

BC=CA′+BA′=AC+AD

AD=BC-AC=a-b,

故答案為:a-b.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料,完成后面題目.
0°-360°間的角的三角函數(shù)
在初中,我們學(xué)習(xí)過銳角的正弦、余弦、正切和余切四種三角函數(shù),即在圖1所示的直角三角形ABC,A是銳角,那么sinA=,cosA=,tanA=,cotA=
為了研究需要,我們再從另一個角度來規(guī)定一個角的三角函數(shù)的意義:
設(shè)有一個角α,我們以它的頂點作為原點,以它的始邊作為x軸的正半軸ox,建立直角坐標系(圖2),在角α的終邊上任取一點P,它的橫坐標是x,縱坐標是y,點P和原點(0,0)的距離為r=(r總是正的),然后把角α的三角函數(shù)規(guī)定為:sinα=,cosα=,tanα=,cotα=

我們知道,圖1的四個比值的大小與角A的大小有關(guān),而與直角三角形的大小無關(guān),同樣圖2中四個比值的大小也僅與角α的大小有關(guān),而與點P在角α的終邊位置無關(guān).
比較圖1與圖2,可以看出一個角的三角函數(shù)的意義的兩種規(guī)定實際上是一樣的,根據(jù)第二種定義回答下列問題.
(1)若90°<α<180°,則角α的三角函數(shù)值sinα、cosα、tanα、cotα,其中取正值的是哪幾個?
(2)若角α的終邊與直線y=2x重合,求sinα+cosα的值.
(3)若角α是鈍角,其終邊上一點P(x,),且cosα=x,求tanα的值.
(4)若0°≤α≤90°,求sinα+cosα的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市2018年平均每天的垃圾處理量為40萬噸/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100萬噸;2019年平均每天的垃圾處理量是2018年平均每天的垃圾處理量的2. 5. 2019年平均每天的垃圾處理率是2018年平均每天的垃圾處理率的1. 25.

(注:

1)求該市2018年平均每天的垃圾排放量;

2)預(yù)計該市2020年平均每天的垃圾排放量比2019年平均每天的垃圾排放量增加. 如果按照創(chuàng)衛(wèi)要求城市平均每天的垃圾處理率不低于,那么該市2020年平均每天的垃圾處理量在2019年平均每天的垃圾處理量的基礎(chǔ)上,至少還需要増加多少萬噸才能使該市2020年平均每天的垃圾處理率符合創(chuàng)衛(wèi)的要求?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將兩個含30°角的三角尺擺放在一起,可以證得ABD是等邊三角形,于是我們得到:在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半.

交換命題的條件和結(jié)論,得到下面的命題:

在直角ABC中,ACB=90°,如果,那么BAC=30°

請判斷此命題的真假,若為真命題,請給出證明;若為假命題,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是(

A.到點距離等于的點的軌跡是以點為圓心,半徑長為的圓

B.等腰的底邊固定,頂點的軌跡是線段的垂直平分線

C.在一個角的內(nèi)部(包括頂點)到角的兩邊距離相等的點的軌邊是這個角的平分線

D.到直線距離等于的點的軌跡是兩條平行于且與的距離等于的直線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小華和小晶上山游玩,小華步行,小晶乘坐纜車,相約在山頂纜車的終點會合. 已知小華歩行的路程是纜車所經(jīng)線路長的2倍,小晶在小華出發(fā)后50分鐘才坐上纜車,纜車的平均速度為每分鐘180. 圖中的折線反映了小華行走的路程(米)與時間(分鐘)之間的函數(shù)關(guān)系.

1)小華行走的總路程是___________米,他途中休息了___________分鐘;小華休息之后行走的速度是每分鐘___________米;

2)當時,的函數(shù)關(guān)系式是___________.

3)當小晶到達纜車終點時,小華離纜車終點的路程是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標系中,已知點A(01),點P在線段OA上,以AP為半徑的⊙P周長為1.點MA開始沿⊙P按逆時針方向轉(zhuǎn)動,射線AMx軸于點Nn,0),設(shè)點M轉(zhuǎn)過的路程為m(0m1).隨著點M的轉(zhuǎn)動,當m變化到時,點N相應(yīng)移動的路徑長為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】科學(xué)考察隊的一輛越野車需要穿越一片沙漠,但這輛車每次裝滿汽油最多只能行駛,隊長想出一個方法,在沙漠中設(shè)若干個儲油點(越野車穿越出沙漠,就可以另外加油).

1)如果穿越全程大于的沙漠,在沙漠中設(shè)一個儲油點,越野車裝滿油從起點出發(fā),到儲油點時從車中取出部分油放進儲油點,然后返回出發(fā)點,加滿油后再開往,到儲油點時,取出儲存的所有油放在車上,再從出發(fā)到達終點,此時,這輛越野車穿越這片沙漠的最大行程是多少?

2)如果穿越全程大于的沙漠,在沙漠中設(shè)2個儲油點,,越野車裝滿油從起點出發(fā),到儲油點時從車中取出部分油放進儲油點;然后返回出發(fā)點加滿油,到儲油點時取出儲油點的全部油放到車上,再到達儲油點,從車中取出部分油放進儲油點;然后返回出發(fā)點加滿油,到儲油點取出儲存的所有油放在車上,最后到達終點.此時,這輛越野車穿越這片沙漠的最大行程是多少

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O是等邊△ABC內(nèi)一點,D是△ABC外的一點,∠AOB110°,∠BOCα,△BOC≌△ADC,∠OCD60°,連接OD

1)求證:△OCD是等邊三角形;

2)當α150°時,試判斷△AOD的形狀,并說明理由;

3)探究:當α為多少度時,△AOD是等腰三角形.

查看答案和解析>>

同步練習(xí)冊答案