【題目】如圖,點O是等邊△ABC內(nèi)一點,D是△ABC外的一點,∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,連接OD.
(1)求證:△OCD是等邊三角形;
(2)當α=150°時,試判斷△AOD的形狀,并說明理由;
(3)探究:當α為多少度時,△AOD是等腰三角形.
【答案】(1)詳見解析;(2)△AOD是直角三角形,理由詳見解析;(3)當α=110°或125°或140°時,△AOD是等腰三角形.
【解析】
(1)根據(jù)全等三角形的性質(zhì)得到OC=DC,根據(jù)等邊三角形的判定定理證明即可;
(2)根據(jù)全等三角形的性質(zhì)得到∠ADC=∠BOC=∠α=150°,結合圖形計算即可;
(3)分∠AOD=∠ADO、∠AOD=∠OAD、∠ADO=∠OAD三種情況,根據(jù)等腰三角形的判定定理計算即可.
解:(1)∵△BOC≌△ADC,
∴OC=DC.
∵∠OCD=60°,
∴△OCD是等邊三角形.
(2)△AOD是直角三角形.
理由如下:
∵△OCD是等邊三角形,
∴∠ODC=60°,
∵△BOC≌△ADC,∠α=150°,
∴∠ADC=∠BOC=∠α=150°,
∴∠ADO=∠ADC﹣∠ODC=150°﹣60°=90°,
∴△AOD是直角三角形.
(3)∵△OCD是等邊三角形,
∴∠COD=∠ODC=60°.
∵∠AOB=110°,∠ADC=∠BOC=α,
∴∠AOD=360°﹣∠AOB﹣∠BOC﹣∠COD=360°﹣110°﹣α﹣60°=190°﹣α,
∠ADO=∠ADC﹣∠ODC=α﹣60°,
∴∠OAD=180°﹣∠AOD﹣∠ADO=180°﹣(190°﹣α)﹣(α﹣60°)=50°.
①當∠AOD=∠ADO時,190°﹣α=α﹣60°,
∴α=125°.
②當∠AOD=∠OAD時,190°﹣α=50°,
∴α=140°.
③當∠ADO=∠OAD時,
α﹣60°=50°,
∴α=110°.
綜上所述:當α=110°或125°或140°時,△AOD是等腰三角形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是等邊△ABC的邊上的一個做勻速運動的動點,其由點A開始沿AB邊運動到B再沿BC邊運動到C為止,設運動時間為t,△ACP的面積為S,則S與t的大致圖象是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=4,∠BAC=90°,點D在邊AB上,BE∥CD,AE⊥CD,垂足為F,且EF=2,點G在線段CF上,若∠GAF=45°,則△ACG的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AD是高,AE、BF是角平分線,它們相交于點O,∠CAB=500,∠C=600,求∠DAE和∠BOA的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】新型冠狀病毒爆發(fā),教育部部署了“停課不停學”的有關工作,各地都在進行在線教育.小依同學為了了解網(wǎng)課學習情況,對本班部分同學最喜愛的課程進行了調(diào)查,調(diào)查課程分別是網(wǎng)上授課、體育鍛煉、名著閱讀、藝術欣賞和其他課程并制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:
(1)本次調(diào)查中一共調(diào)查了__________名學生,其中“名著閱讀”所占的圓心角度數(shù)為__________.
(2)請把條形統(tǒng)計圖補全.
(3)在調(diào)查的同學中隨機選取一名學生,求他恰好最喜愛的課程是“藝術欣賞”的概率.
(4)若該校一共有3000名學生,請估算出全校最喜愛的課程是“體育鍛煉”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】銳銳參加我市電視臺組織的“牡丹杯”智力競答節(jié)目,答對最后兩道單選題就順利通關,第一道單選題有3個選項,第二道單選題有4個選項,這兩道題銳銳都不會,不過銳銳還有兩個“求助”可以用(使用“求助”一次可以讓主持人去掉其中一題的一個錯誤選項).
(1)如果銳銳兩次“求助”都在第一道題中使用,那么銳銳通關的概率是________;
(2)如果銳銳兩次“求助”都在第二道題中使用,那么銳銳通關的概率是________;
(3)如果銳銳每道題各用一次“求助”,請用樹狀圖或者列表來分析他順利通關的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角坐標系中,的頂點都在網(wǎng)格點上,其中,C點坐標為.
(1)寫出點A、B的坐標:
______ ,______ 、 ______ ,______
(2)將先向左平移2個單位長度,再向上平移1個單位長度,得到,則的三個頂點坐標分別是 ______ ,______ 、 ______ ,______ 、 ______ ,______
(3)求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為更好地開展“傳統(tǒng)文化進校園”活動,隨機抽查了部分學生,了解他們最喜愛的傳統(tǒng)文化項目類型(分為書法、圍棋、戲劇、國畫共4類),并將統(tǒng)計結果繪制成如圖不完整的頻數(shù)分布表及頻數(shù)分布直方圖.
最喜愛的傳統(tǒng)文化項目類型頻數(shù)分布表
根據(jù)以上信息完成下列問題:
(1)直接寫出頻數(shù)分布表中a的值;
(2)補全頻數(shù)分布直方圖;
(3)若全校共有學生1500名,估計該校最喜愛圍棋的學生大約有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com