【題目】“綠水青山就是金山銀山”,為保護生態(tài)環(huán)境,某地準(zhǔn)備開荒種樹,兩次參加活動的人數(shù)及開支如下表:
開荒(人) | 種樹(人) | 總支出(元) | |
第一次 | 15 | 9 | 57000 |
第二次 | 10 | 16 | 68000 |
(1)若兩次開荒種樹活動的人均支出費用一樣,求開荒和種樹的人均支出費用各是多少?
(2)在人均支出費用不變的情況下,為節(jié)約開支,施工單位準(zhǔn)備抽調(diào)40人參加此活動,要使得總支出不超過102 000元,且開荒人數(shù)小于種樹人數(shù),則有哪幾種分配人員方案?
【答案】(1)開荒人均支出費用2000元,種樹的人均支出費用是3000元;(2)有兩種分配方案:方案一:開荒18人,種樹22人;方案二:開荒19人,種樹21人.
【解析】
(1)設(shè)開荒人均支出費用元,種樹人均支出費用元,根據(jù)前后兩次的總支出列出方程組加以求解即可;
(2)設(shè)開荒人數(shù)為人,則種樹人數(shù)為人,根據(jù)“總支出不超過102 000元,且開荒人數(shù)小于種樹人數(shù)”進一步列出不等式組求解即可.
(1)設(shè)開荒人均支出費用元,種樹人均支出費用元,
由題意得: ,
解得: ,
答:開荒人均支出費用2000元,種樹的人均支出費用是3000元.
(2)設(shè)開荒人數(shù)為人,則種樹人數(shù)為人,
由題意得: ,
解得:,
∵取整數(shù),
∴當(dāng)時,;當(dāng)時,;
答:有兩種分配方案:方案一:開荒18人,種樹22人; 方案二:開荒19人,種樹21人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C是線段AB外一點,用沒有刻度直尺和圓規(guī)畫圖:
(1)畫射線CB;
(2)畫直線AC;
(3)①延長線段AB到E,使AE=3AB;
②在①的條件下,如果AB=2cm,那么BE= cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分線.若P,Q分別是AD和AC上的動點,則PC+PQ的最小值是( )
A. B. 4 C. D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC紙片沿DE折疊,使點A落在點A'處,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=110°,則∠1+∠2的度數(shù)為( 。
A. 80°; B. 90°; C. 100°; D. 110°;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,點E在BC上.過點D作DF∥BC,連接DB.
求證:(1)△ABD≌△ACE;
(2)DF=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1) ,折疊平行四邊形,使得分別落在邊上的點,為折痕
(1)若,證明:平行四邊形是菱形;
(2)若 ,求的大小;
(3)如圖(2) ,以為鄰邊作平行四邊形,若,求的大小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)組織“獻愛心手拉手”捐款活動.對社區(qū)部分捐款戶數(shù)進行調(diào)查和分組統(tǒng)計后,將數(shù)據(jù)整理成如圖所示的統(tǒng)計圖和統(tǒng)計表(圖中信息不完整).已知A、B兩組捐款戶數(shù)的比為1:5.請結(jié)合以上信息解答下列問題.捐款戶數(shù)分組統(tǒng)計表
(1)本次調(diào)查了 戶;
(2)補全“捐款戶數(shù)分組統(tǒng)計表”和“捐款戶數(shù)分組統(tǒng)計圖1”;
(3)若該社區(qū)有2000戶住戶,請根據(jù)以上信息,估計全社區(qū)捐款不少于150元的戶數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)課上,王老師出示一道題:解方程.小馬立即舉手并在黑板上寫出了解方程過程,具體如下:
解:,
去括號,得:.………………①
移項,得:.…………………②
合并同類項,得:.……………………③
系數(shù)化為1,得:.………………………④
(1)請你寫出小馬解方程過程中哪步錯了,并簡要說明錯誤原因;
(2)請你正確解方程:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中有 A(-2,1), B(3, 1),C(2, 3)三點,請回答下列問題:
(1)在坐標(biāo)系內(nèi)描出點A, B, C的位置.
(2)畫出關(guān)于直線x=-1對稱的,并寫出各點坐標(biāo).
(3)在y軸上是否存在點P,使以A,B, P三點為頂點的三角形的面積為10?若存在,請直接寫出點P的坐標(biāo):若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com