【題目】如圖,直線y=k和雙曲線y=相交于點P,過P點作PA0垂直x軸,垂足為A0,x軸上的點A0、A1、A2、…A9的橫坐標是連續(xù)的整數(shù),過點A1、A2、…A9分別作x軸的垂線,與雙曲線y=(x>0)及直線y=k分別交于點B1、B2、…B9,C1、C2…C9,則_____

【答案】9

【解析】

根據(jù)已知條件可以求出直線y=k和雙曲線y=的交點坐標是(1,k),則A0O=1,然后根據(jù)已知可以得到A9的橫坐標是10,把x=10代入y=即可求出得B9的縱坐標是,從而求出C9B9,A9B9,最后求出則

∵直線y=k和雙曲線y=相交于點P,
∴直線y=k和雙曲線y=的交點P坐標是(1,k),∴A0O=1,
x軸上的點A0、A1、A2、…A9的橫坐標是連續(xù)的整數(shù),
A9的橫坐標是10,
x=10代入y=,解得B9的縱坐標是,
C9B9=,

所以9.

故答案是:9.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】圖為二次函數(shù)y=ax2+bx+c的圖象,給出下列說法:①ab<0;②方程x2+bx+c=0的根為x1=-1,x2=3;a+b+c>0;④當x>1時,yx值的增大而增大;⑤當y>0時,-1<x<3.其中正確的說法有__.(請寫出所有正確說法的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,△AEC中,∠E90°,將△AEC繞點A順時針旋轉60°得到△ADB,ACAB對應,AEAD對應

請證明△ABC為等邊三角形;

如圖2BD所在的直線為b,分別過點A、C作直線b的平行線a、c,直線a、b之間的距離為2,直線ac之間的距離為7,則等邊△ABC的邊長為   

2)如圖3,∠POQ60°,△ABC為等邊三角形,點A為∠POQ內部一點,點BC分別在射線OQ、OP上,AEOPE,OE5,AE2,求△ABC的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】給出下列四個關于是否成反比例的命題,判斷它們的真假.

(1)面積一定的等腰三角形的底邊長和底邊上的高成反比例;

(2)面積一定的菱形的兩條對角線長成反比例;

(3)面積一定的矩形的兩條對角線長成反比例;

(4)面積一定的直角三角形的兩直角邊長成比例.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)圖5所示的程序,得到了yx的函數(shù)圖象,如圖5,若點M

y軸正半軸上任意一點,過點MPQx軸交圖象于點PQ,連接OP、OQ,則以下結論:

x0時,y=

②△OPQ的面積為定值

x0時,yx的增大而增大

MQ=2PM

⑤∠POQ可以等于90°

其中正確結論是

A①②④B②④⑤C③④⑤D②③⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某自動化車間計劃生產480個零件,當生產任務完成一半時,停止生產進行自動化程序軟件升級,用時20分鐘,恢復生產后工作效率比原來提高了,結果完成任務時比原計劃提前了40分鐘,求軟件升級后每小時生產多少個零件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等邊三角形的內切圓半徑、外接圓半徑和高的比為(

A. 321 B. 123 C. 231 D. 312

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l1y=﹣x與反比例函數(shù)y的圖象交于A,B兩點(點A在點B左側),已知A點的縱坐標是2;

1)求反比例函數(shù)的表達式;

2)根據(jù)圖象直接寫出﹣x的解集;

3)將直線l1y=- x沿y向上平移后的直線l2與反比例函數(shù)y在第二象限內交于點C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC在平面直角坐標系xOy中,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點在BC邊上,且拋物線經過O,A兩點,直線AC交拋物線于點D.

(1)求拋物線的解析式;

(2)求點D的坐標;

(3)若點M在拋物線上,點N在x軸上,是否存在以A,D,M,N為頂點的四邊形是平行四邊形?若存在,求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案