【題目】等邊三角形的內(nèi)切圓半徑、外接圓半徑和高的比為(

A. 321 B. 123 C. 231 D. 312

【答案】B

【解析】

如圖,⊙O 為△ABC 的內(nèi)切圓,設⊙O 的半徑為 r,作 AHBC H,利用等邊三角形的性質(zhì)得 AH 平分∠BAC,則可判斷點 O AH 上,所以 OHr,連接 OB,再證明

OAOB2r,則 AH3r,所以 OHOAAH123

解: 如圖,⊙O 為△ABC 的內(nèi)切圓,設⊙O 的半徑為 r,作 AHBC H,

∵△ABC 為等邊三角形,

AH 平分∠BAC,即∠BAH30°,

∴點 O AH 上,

OHr, 連接 OB,

∵⊙O 為△ABC 的內(nèi)切圓,

∴∠ABO=∠CBO30°,

OAOB

RtOBH 中,OB2OH2r,

AH2r+r3r

OHOAAH123,

即等邊三角形的內(nèi)切圓半徑、外接圓半徑和高的比為 123

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程ax2﹣(a+2x+2=0有兩個不相等的正整數(shù)根時,整數(shù)a的值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某小區(qū)的一個健身器材,已知BC=0.15m,AB=2.70m,BOD=70°,求端點A到地面CD的距離(精確到0.1m).(參考數(shù)據(jù):sin70°0.94,cos70°0.34,tan70°2.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=k和雙曲線y=相交于點P,過P點作PA0垂直x軸,垂足為A0,x軸上的點A0、A1、A2、…A9的橫坐標是連續(xù)的整數(shù),過點A1、A2、…A9分別作x軸的垂線,與雙曲線y=(x>0)及直線y=k分別交于點B1、B2、…B9,C1、C2、…C9,則_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明同學三次到某超市購買A、B兩種商品,其中僅有一次是有折扣的,購買數(shù)量及消費金額如下表:

類別

次數(shù)

購買A商品數(shù)量(件)

購買B商品數(shù)量(件)

消費金額(元)

第一次

4

5

320

第二次

2

6

300

第三次

5

7

258

解答下列問題:

(1)第  次購買有折扣;

(2)求A、B兩種商品的原價;

(3)若購買A、B兩種商品的折扣數(shù)相同,求折扣數(shù);

(4)小明同學再次購買A、B兩種商品共10件,在(3)中折扣數(shù)的前提下,消費金額不超過200元,求至少購買A商品多少件.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù) ymx22mx+n 的圖象經(jīng)過(0,﹣3).

1n _____________;

2) 若二次函數(shù) ymx22mx+n 的圖象與 x 軸有且只有一個交點,求 m 值;

3) 若二次函數(shù) ymx22mx+n 的圖象與平行于 x 軸的直線 y5 的一個交點的橫坐標為4,則另一個交點的坐標為

4) 如圖,二次函數(shù) ymx22mx+n 的圖象經(jīng)過點 A3,0),連接 AC,點 P 是拋物線位于線段 AC 下方圖象上的任意一點,求PAC 面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)yx+4的圖象與反比例函數(shù)y(k為常數(shù)且k0)的圖象交于A(1a),B兩點,與x軸交于點C

(1)a,k的值及點B的坐標;

(2)若點Px軸上,且SACPSBOC,直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,按要求完成下面的問題:

(1)以圖中的O為位似中心,ABC作位似變換且縮小到原來的一半,得到A'B'C',再把A'B'C'繞點B'逆時針旋轉(zhuǎn)90°得到A″B'C″;

(2)求點AA'A″所經(jīng)過的路線長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長均為1,ABC的三個頂點均在小正方形的頂點上.

1)請在方格紙上建立平面直角坐標系,使點A、C的坐標分別為(23)、(62),并寫出點B的坐標;

2)以原點O為位似中心,在第一象限內(nèi)將ABC放大,相似比為2,畫出放大后的A'B'C';

3)直接寫出BCAC的交點坐標.

查看答案和解析>>

同步練習冊答案