【題目】如圖,二次函數(shù)的圖象與x軸交于點(diǎn)和點(diǎn)B,與y軸交于點(diǎn).
求該二次函數(shù)的表達(dá)式;
過點(diǎn)A的直線且交拋物線于另一點(diǎn)D,求直線AD的函數(shù)表達(dá)式;
在的條件下,在x軸上是否存在一點(diǎn)P,使得以B、C、P為頂點(diǎn)的三角形與相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
【答案】(1);(2);(3)或.
【解析】
(1)把,代入即可得到結(jié)果;
(2)在中,令,則,得到,由已知條件得直線的解析式為,由于,設(shè)直線的解析式為,即可得到結(jié)論;
(3)由,得到,只要當(dāng)或時(shí),,求出,,,代入比例式解得的長度,即可得到或.
次函數(shù)的圖象經(jīng)過點(diǎn)和點(diǎn),
,
解得,
二次函數(shù)的表達(dá)式為;
在中,令,則,
解得:,,
,
由已知條件得直線BC的解析式為,
,
設(shè)直線AD的解析式為,
,
,
直線AD的解析式為.
,
,
又,
,點(diǎn)P在點(diǎn)B得到左側(cè),
只可能∽或∽,
或時(shí),
,,,,
,,,
即或,
解得或,
,,
或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,邊長為2的等邊三角形ABC中,D點(diǎn)在邊BC上運(yùn)動(dòng)(不與B、C重合),點(diǎn)E在邊AB的延長線上,點(diǎn)F在邊AC的延長線上,AD=DE=DF.
(1)若∠AED=30°,則∠ADB=_______°.
(2)求證:△BED≌△CDF
(3)點(diǎn)D在BC邊上從B至C的運(yùn)動(dòng)過程中,△BED周長變化規(guī)律為( )
A.不變 B.一直變小 C.先變大后變小 D.先變小后變大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程(x-3)(x-2)-p2=0.
(1)求證:無論p取何值時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程兩實(shí)數(shù)根分別為x1、x2,且滿足x12+x22=3 x1x2,求實(shí)數(shù)p的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一水果店,從批發(fā)市場按4元千克的價(jià)格購進(jìn)10噸蘋果,為了保鮮放在冷藏室里,但每天仍有一些蘋果變質(zhì),平均每天有50千克變質(zhì)丟棄,且每存放一天需要各種費(fèi)用300元,據(jù)預(yù)測,每天每千克價(jià)格上漲元.
設(shè)x天后每千克蘋果的價(jià)格為p元,寫出p與x的函數(shù)關(guān)系式;
若存放x天后將蘋果一次性售出,設(shè)銷售總金額為y元,求出y與x的函數(shù)關(guān)系式;
該水果店將這批水果存放多少天后一次性售出,可以獲得最大利潤,最大利潤為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,F(xiàn)為CD上一點(diǎn),∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數(shù)為整數(shù),則∠C的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大樹AB與大數(shù)CD相距13m,小華從點(diǎn)B沿BC走向點(diǎn)C,行走一段時(shí)間后他到達(dá)點(diǎn)E,此時(shí)他仰望兩棵大樹的頂點(diǎn)A和D,兩條視線的夾角正好為90°,且EA=ED.已知大樹AB的高為5m,小華行走的速度為1m/s,小華行走到點(diǎn)E的時(shí)間是( )
A. 13s B. 8s C. 6s D. 5s
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn),且此拋物線的頂點(diǎn)坐標(biāo)為.
求此拋物線的解析式;
設(shè)點(diǎn)D為已知拋物線對稱軸上的任意一點(diǎn),當(dāng)與面積相等時(shí),求點(diǎn)D的坐標(biāo);
點(diǎn)P在線段AM上,當(dāng)PC與y軸垂直時(shí),過點(diǎn)P作x軸的垂線,垂足為E,將沿直線CE翻折,使點(diǎn)P的對應(yīng)點(diǎn)與P、E、C處在同一平面內(nèi),請求出點(diǎn)坐標(biāo),并判斷點(diǎn)是否在該拋物線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線經(jīng)過點(diǎn)A(-3,4).
(1)求b的值;
(2)過點(diǎn)A作軸的平行線交拋物線于另一點(diǎn)B,在直線AB上任取一點(diǎn)P,作點(diǎn)A關(guān)于直線OP的對稱點(diǎn)C;
①當(dāng)點(diǎn)C恰巧落在軸時(shí),求直線OP的表達(dá)式;
②連結(jié)BC,求BC的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)三角形的兩條邊長為1cm和2cm,一個(gè)內(nèi)角為45°.
(1)請你利用如圖45°角,畫出一個(gè)滿足題設(shè)條件的三角形.
(2)你是否還能畫出既滿足題設(shè)條件,又與(1)中所畫的不全等的三角形?若能,請用“尺規(guī)作圖”畫出,若不能,請說明理由.
(3)如果將題設(shè)條件改為“一個(gè)三角形的兩條邊長為3cm和4cm,一個(gè)內(nèi)角為45°”,畫出滿足這一條件的,且彼此不全等的所有三角形.(要求在圖中標(biāo)記3cm和4cm的邊長)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com