【題目】有一水果店,從批發(fā)市場按4千克的價(jià)格購進(jìn)10噸蘋果,為了保鮮放在冷藏室里,但每天仍有一些蘋果變質(zhì),平均每天有50千克變質(zhì)丟棄,且每存放一天需要各種費(fèi)用300元,據(jù)預(yù)測,每天每千克價(jià)格上漲元.

設(shè)x天后每千克蘋果的價(jià)格為p元,寫出px的函數(shù)關(guān)系式;

若存放x天后將蘋果一次性售出,設(shè)銷售總金額為y元,求出yx的函數(shù)關(guān)系式;

該水果店將這批水果存放多少天后一次性售出,可以獲得最大利潤,最大利潤為多少?

【答案】;(3)該水果店將這批水果存放50天后一次性售出,可以獲得最大利潤,最大利潤為12500元.

【解析】

(1)根據(jù)按每千克元的市場價(jià)收購了這種蘋果千克,此后每天每千克蘋果價(jià)格會(huì)上漲元,進(jìn)而得出天后每千克蘋果的價(jià)格為元與的函數(shù)關(guān)系;

(2)根據(jù)每千克售價(jià)乘以銷量等于銷售總金額,求出即可;

(3)利用總售價(jià)-成本-費(fèi)用=利潤,進(jìn)而求出即可.

根據(jù)題意知,;

當(dāng)時(shí),最大利潤12500元,

答:該水果店將這批水果存放50天后一次性售出,可以獲得最大利潤,最大利潤為12500元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),頂端距離地面2米,則小巷的寬度為( )

A.2.2B.2.3C.2.4D.2.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)2011年新春聯(lián)歡會(huì)中,有一個(gè)獎(jiǎng)游戲,規(guī)則如下:有4張紙牌,背面都是喜羊羊頭像,正面有2張笑臉 2張哭臉.現(xiàn)將4張紙牌洗勻后背面朝上擺放到桌上,然后讓同學(xué)去翻紙牌

1現(xiàn)小芳一次翻牌機(jī)會(huì),若正面笑臉獎(jiǎng),正面哭臉的不獲獎(jiǎng).她從中隨機(jī)翻開一張紙牌小芳獎(jiǎng)的概率是

2如果小芳、小明都有翻的機(jī)會(huì).小芳先翻一張,放回后再翻一張;小明同時(shí)翻開兩張紙牌.他們翻開兩張紙牌中只要出現(xiàn)笑臉就獲獎(jiǎng)他們獲獎(jiǎng)的機(jī)會(huì)相等嗎?請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(0,4),線段MN的位置如圖所示,其中點(diǎn)M的坐標(biāo)為(﹣3,﹣1),點(diǎn)N的坐標(biāo)為(3,﹣2).

1)將線段MN平移得到線段AB,其中點(diǎn)M的對應(yīng)點(diǎn)為A,點(diǎn)N的對稱點(diǎn)為B

點(diǎn)M平移到點(diǎn)A的過程可以是:先向   平移   個(gè)單位長度,再向   平移   個(gè)單位長度;

點(diǎn)B的坐標(biāo)為   

2)在(1)的條件下,若點(diǎn)C的坐標(biāo)為(40),連接AC,BC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,點(diǎn)P從點(diǎn)A出發(fā),以的速度沿折線運(yùn)動(dòng),最終回到點(diǎn)A,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為,線段AP的長度為,則能夠反映yx之間函數(shù)關(guān)系的圖象大致是

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABBC,AE平分∠BADBC于點(diǎn)E,AEDE,∠1+2=90°,MN分別是BA,CD延長線上的點(diǎn),∠EAM和∠EDN的平分線交于點(diǎn)F,下列結(jié)論:①ABCD;②∠AEB+ADC=180°;③DE平分∠ADC;④∠F為定值.其中結(jié)論正確的有(

A. 4個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于點(diǎn)和點(diǎn)B,與y軸交于點(diǎn)

求該二次函數(shù)的表達(dá)式;

過點(diǎn)A的直線且交拋物線于另一點(diǎn)D,求直線AD的函數(shù)表達(dá)式;

的條件下,在x軸上是否存在一點(diǎn)P,使得以B、CP為頂點(diǎn)的三角形與相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面內(nèi),兩條直線L1,L2相交于點(diǎn)O,對于平面內(nèi)任意一點(diǎn)M,p,q分別是點(diǎn)M到直線L1,L2的距離,則稱(p,q)為點(diǎn)M距離坐標(biāo)”.根據(jù)上述規(guī)定,“距離坐標(biāo)(2,1)的點(diǎn)共有_____個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系中,直線y=-x+6與x軸、y軸分別交于A、B兩點(diǎn)、

直線y=ax+a經(jīng)過點(diǎn)B交x軸于點(diǎn)C.

(1)求AC長;

(2)點(diǎn)D為線段BC上一動(dòng)點(diǎn),過點(diǎn)D作x軸平行線分別交OB、AB于點(diǎn)E、F,點(diǎn)G為AF中點(diǎn),直線EG交x軸于H,設(shè)點(diǎn)D的橫坐標(biāo)為t,線段AH長為d(d≠0),求d與t之間的函數(shù)關(guān)系式;

(3)在(2)的條件下,點(diǎn)K為線段OA上一點(diǎn),連接EK,過F作FM⊥EK,直線FM交x軸于點(diǎn)M,當(dāng)KH=2CO,點(diǎn)0到直線FM的距離為時(shí),求點(diǎn)D的坐標(biāo)。

備用圖 備用圖

查看答案和解析>>

同步練習(xí)冊答案