【題目】為加強中小學(xué)生安全教育,某校組織了“防溺水”知識競賽,對表現(xiàn)優(yōu)異的班級進(jìn)行獎勵,學(xué)校購買了若干副乒乓球拍和羽毛球拍購買2副乒乓球拍和1副羽毛球拍共需116元;購買3副乒乓球拍和2副羽毛球拍共需204元.

求購買1副乒乓球拍和1副羽毛球拍各需多少元;

若學(xué)校購買乒乓球拍和羽毛球拍共30副,且支出不超過1480元,則最多能夠購買多少副羽毛球拍?

【答案】購買一副乒乓球拍28元,一副羽毛球拍60元;這所中學(xué)最多可購買20副羽毛球拍.

【解析】

設(shè)購買一副乒乓球拍x元,一副羽毛球拍y元,由購買2副乒乓球拍和1副羽毛球拍共需116元,購買3副乒乓球拍和2副羽毛球拍共需204元,可得出方程組,解出即可.

設(shè)可購買a副羽毛球拍,則購買乒乓球拍副,根據(jù)購買足球和籃球的總費用不超過1480元建立不等式,求出其解即可.

設(shè)購買一副乒乓球拍x元,一副羽毛球拍y元,

由題意得,

解得:

答:購買一副乒乓球拍28元,一副羽毛球拍60元.

設(shè)可購買a副羽毛球拍,則購買乒乓球拍副,

由題意得,

解得:,

答:這所中學(xué)最多可購買20副羽毛球拍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,動點P從點B出發(fā)沿射線BC1cm/s的速度移動,設(shè)運動的時間為ts.

(1)求BC邊的長;

(2)當(dāng)△ABP為直角三角形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,把ADE沿AE折疊得AED’,若∠BAD’=30

(1)求∠AED’的度數(shù);

(2)把△AED’A點逆時針旋轉(zhuǎn)60AD1E1,畫出AD1E1

(3)直接寫出∠AD1E和∠E1D1E.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【探索新知】:如圖1,射線OC在∠AOB的內(nèi)部,圖中共有3個角:∠AOBAOC和∠BOC,若其中有一個角的度數(shù)是另一個角度數(shù)的兩倍,則稱射線OC是∠AOB巧分線

1)一個角的平分線   這個角的巧分線;(填不是

2)如圖2,若∠MPN=α,且射線PQ是∠MPN巧分線,則∠MPQ=   ;(用含α的代數(shù)式表示出所有可能的結(jié)果)

【深入研究】:如圖2,若∠MPN=60°,且射線PQ繞點PPN位置開始,以每秒10°的速度逆時針旋轉(zhuǎn),當(dāng)PQPN180°時停止旋轉(zhuǎn),旋轉(zhuǎn)的時間為t秒.

3)當(dāng)t為何值時,射線PM是∠QPN巧分線

4)若射線PM同時繞點P以每秒的速度逆時針旋轉(zhuǎn),并與PQ同時停止,請直接寫出當(dāng)射線PQ是∠MPN巧分線t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖中的小方格都是邊長為1的正方形,△ABC的頂點坐標(biāo)分別為:A(-3,0),B(-1,-2),C(-2,2).

1)請在圖中畫出ABCB點順時針旋轉(zhuǎn)90°后的圖形ABC′.

2)請直接寫出以A、BC為頂點平行四邊形的第4個頂點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E是正方形ABCD的邊DC上一點,把△ADE順時針旋轉(zhuǎn)△ABF的位置.

(1)旋轉(zhuǎn)中心是點 ,旋轉(zhuǎn)角度是      度;

(2)若連結(jié)EF,則△AEF 三角形;并證明;

(3)若四邊形AECF的面積為25,DE=2,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為1的小正方形構(gòu)成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點上,則∠AED的正弦值等于(
A.
B.
C.2
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計劃購買籃球、排球共20個,購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同。

(1)籃球和排球的單價各是多少元?

(2)若購買籃球不少于8個,所需費用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A、B、C在數(shù)軸上對應(yīng)的實數(shù)分別為a、b、c,滿足(b+5)2+|a﹣8|=0,點P位于該數(shù)軸上.

(1)求出a,b的值,并求A、B兩點間的距離;

(2)設(shè)點C與點A的距離為25個單位長度,且|ac|=﹣ac.若PB=2PC,求點P在數(shù)軸上對應(yīng)的實數(shù);

(3)若點P從原點開始第一次向左移動1個單位長度,第二次向右移動3個單位長度,第三次向左移動5個單位長度,第四次向右移動7個單位長度,(以此類推).則點p 能移動到與點A或點B重合的位置嗎?若能,請?zhí)骄啃枰苿佣嗌俅沃睾希咳舨荒,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案