【題目】某水果批發(fā)商銷售每箱進(jìn)價(jià)為40元的柑橘,物價(jià)部門規(guī)定每箱售價(jià)不得高于55元;市場調(diào)查發(fā)現(xiàn),若每箱以45元的價(jià)格銷售,平均每天銷售105箱;每箱以50元的價(jià)格銷售,平均每天銷售90箱.假定每天銷售量y(箱)與銷售價(jià)x(元/箱)之間滿足一次函數(shù)關(guān)系式.

1)求平均每天銷售量y(箱)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式;

2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式;

3)當(dāng)每箱蘋果的銷售價(jià)為多少元時(shí),可以獲得最大利潤?最大利潤是多少?

【答案】(1)∴y=-3x+240;(2)w=-3 x2+360x-9600;(3) 當(dāng)每箱蘋果的銷售價(jià)為55元時(shí),可以獲得最大利潤,為1125元.

【解析】

(1)利用每天銷售量y(箱)與銷售價(jià)x(元/箱)之間滿足一次函數(shù)關(guān)系式,利用待定系數(shù)法求出一次函數(shù)解析式即可;

(2)利用該批發(fā)商平均每天的銷售利潤w(元)=每箱的銷售利潤×每天的銷售量得出即可;

(3)根據(jù)題中所給的自變量的取值得到二次的最值問題即可.

(1)設(shè)y=kx+b,

把已知(45,105),(50,90)代入得,

解得:,

故平均每天銷售量y(箱)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式為:y=-3x+240;

(2)∵水果批發(fā)商銷售每箱進(jìn)價(jià)為40元的蘋果,銷售價(jià)x/箱,

∴該批發(fā)商平均每天的銷售利潤w(元)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式為:

W=(x-40)(-3x+240)=-3x2+360x-9600.

(3)W=-3x2+360x-9600=-3(x-60)2+1200,

a=-3<0,∴拋物線開口向下.

又∵對稱軸為x=60,∴當(dāng)x<60,Wx的增大而增大,

由于50≤x≤55,∴當(dāng)x=55時(shí),W的最大值為1125元.

∴當(dāng)每箱蘋果的銷售價(jià)為55元時(shí),可以獲得最大利潤,為1125元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某人在D處測得山頂C的仰角為37°,向前走100米來到山腳A處,測得山坡AC的坡度為i=1:0.5,求山的高度(不計(jì)測角儀的高度,參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD為正方形,點(diǎn)E為線段AC上一點(diǎn),連接DE,過點(diǎn)EEF⊥DE,交射線BC于點(diǎn)F,以DE、EF為鄰邊作矩形DEFG,連接CG.

(1)如圖1,求證:矩形DEFG是正方形;

(2)若AB=2,CE=,求CG的長度;

(3)當(dāng)線段DE與正方形ABCD的某條邊的夾角是30°時(shí),直接寫出∠EFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,每個(gè)小正方形的邊長都為1,四邊形ABCD的頂點(diǎn)都在小正方形的頂點(diǎn)上.

1)求四邊形ABCD的面積;

2)∠BCD是直角嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)Aaa),Baa3),其中a為整數(shù).點(diǎn)C在線段AB上,且點(diǎn)C的橫縱坐標(biāo)均為整數(shù).

1)當(dāng)a1時(shí),畫出線段AB;

2)若點(diǎn)Cx軸上,求出點(diǎn)C的坐標(biāo);

3)若點(diǎn)C縱坐標(biāo)滿足,直接寫出a的所有可能取值:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】農(nóng)八師石河子市某中學(xué)初三(1)班的學(xué)生,在一次數(shù)學(xué)活動(dòng)課中,來到市游憩廣場,測量坐落在廣場中心的王震將軍的銅像高度,已知銅像底座的高為3.5m.某小組的實(shí)習(xí)報(bào)告如下請你計(jì)算出銅像的高(結(jié)果精確到0.1m)

實(shí)習(xí)報(bào)告2003925

題目1

測量底部可以到達(dá)的銅像高

數(shù)

據(jù)

測量項(xiàng)目

第一次

第二次

平均值

BD的長

12.3m

11.7m

測傾器CD的高

1.32m

1.28m

傾斜角

α=30°56'

α=31°4'

計(jì)

結(jié)果

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC 中,AB=AC,C=70°,AB′C′ABC 關(guān)于直線 EF對稱,∠CAF=10°,連接 BB′,則∠ABB′的度數(shù)是(

A. 30° B. 35° C. 40° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為支援困山區(qū),某學(xué)校愛心活動(dòng)小組準(zhǔn)備用籌集的資金購買AB兩種型號的學(xué)習(xí)用品.已知B型學(xué)習(xí)用品的單價(jià)比A型學(xué)習(xí)用品的單價(jià)多10元,用180元購買B型學(xué)習(xí)用品與用120元購買A型學(xué)習(xí)用品的件數(shù)相同.

1)求A,B兩種學(xué)習(xí)用品的單價(jià)各是多少元;

2)若購買A、B兩種學(xué)習(xí)用品共1000件,且總費(fèi)用不超過28000元,則最多購買B型學(xué)習(xí)用品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABMRtADN的斜邊分別為正方形的邊ABAD,其中AM=AN.

(1)求證:RtABMRtAND

(2)線段MN與線段AD相交于T,若AT=,的值

查看答案和解析>>

同步練習(xí)冊答案