【題目】如圖,已知△ABC中,∠BAC=90°,AB=AC,D、E是BC邊上的點(diǎn),將△ABD繞點(diǎn)A旋轉(zhuǎn),得到△ACD′.
(1)當(dāng)∠DAE=45°時,求證:DE=D′E;
(2)在(1)得條件下,猜想:BD2、DE2、CE2有怎樣的數(shù)量關(guān)系?請寫出,并說明理由.
【答案】(1)證明見解析;(2)BD2+CE2=DE2.理由見解析
【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AD=AD′,∠CAD′=∠BAD,然后求出∠D′AE=45°,從而得到∠DAE=∠D′AE,再利用“邊角邊”證明△ADE和△AD′E全等,根據(jù)全等三角形對應(yīng)邊相等證明即可;
(2)由(1)知△AED≌△AED′得到:ED=ED′,由等腰直角三角形的性質(zhì)可得AB=AC,∠BAC=90°,∠B=∠ACB=45°,再根據(jù)已知可得BD=CD′,∠B=∠ACD′=45°,繼而可得∠BCD′=90°,在Rt△CD′E中,根據(jù)勾股定理有CE2+D′C2=D′E2,繼而利用等量代換即可得BD2+CE2=DE2.
(1)∵△ABD繞點(diǎn)A旋轉(zhuǎn),得到△ACD′,
∴AD=AD′,∠DAD′=∠BAC=90°,
∵∠DAE=45°
∴∠EAD′=∠DAD′﹣∠DAE=90°﹣45°=45°,
∴∠EAD′=∠DAE,
在△AED與△AED′中
,
∴△AED≌△AED′,
∴DE=D′E;
(2)BD2+CE2=DE2.理由如下:
由(1)知△AED≌△AED′得到:ED=ED′,
在△ABC中,AB=AC,∠BAC=90°,
∴∠B=∠ACB=45°,
∵△ABD繞點(diǎn)A旋轉(zhuǎn),得到△ACD′
∴BD=CD′,∠B=∠ACD′=45°,
∴∠BCD′=∠ACB+∠ACD′=45°+45°=90°,
在Rt△CD′E中,CE2+D′C2=D′E2,
∴BD2+CE2=DE2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B兩個小集鎮(zhèn)在河流CD的同側(cè),分別到河的距離為AC=10千米,BD=30千米,且CD=30千米,現(xiàn)在要在河邊建一自來水廠,向A、B兩鎮(zhèn)供水,鋪設(shè)水管的費(fèi)用為每千米3萬,請你在河流CD上選擇水廠的位置M,使鋪設(shè)水管的費(fèi)用最節(jié)省,并求出總費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=4,BC=6,∠B=60°,將△ABC沿著射線BC 的方向平移 2 個單位后,得到△△A′B′C′,連接 A′C,則△A′B′C 的周長為__________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A( , )和B(4,m),點(diǎn)P是線段AB上異于A、B的動點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)D,交拋物線于點(diǎn)C.
(1)求拋物線的解析式;
(2)是否存在這樣的P點(diǎn),使線段PC的長有最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C在同一直線上,在這條直線同側(cè)作等邊△ABD和等邊△BCE,連接AE和CD,交點(diǎn)為M,AE交BD于點(diǎn)P,CD交BE于點(diǎn)Q,連接PQ、BM, 有4個結(jié)論:①△ABE≌△DBC,②△DQB≌△ABP,③∠EAC=30°,④∠AMC=120°,請將所有正確結(jié)論的序號填在橫線上______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△OAB的頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(3, ),點(diǎn)C的坐標(biāo)為(,0),點(diǎn)P為斜邊OB上的一個動點(diǎn),則PA+PC的最小值為( )
A. B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn),的坐標(biāo)分別為,,點(diǎn)是軸上的一個動點(diǎn),若點(diǎn)關(guān)于直線的對稱點(diǎn)恰好落在坐標(biāo)軸上,則點(diǎn)的坐標(biāo)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于任意三點(diǎn)的“矩面積”,給出如下定義:“水平底”為任意兩點(diǎn)橫坐標(biāo)差的最大值,“鉛垂高”為任意兩點(diǎn)縱坐標(biāo)差的最大值,則“矩面積”.
例如:三點(diǎn)坐標(biāo)分別為,則“水平底”,“鉛垂高”,“矩面積”.
(1)已知點(diǎn).
①若三點(diǎn)的“矩面積”為12,求點(diǎn)的坐標(biāo);
②求三點(diǎn)的“矩面積”的最小值.
(2)已知點(diǎn),其中.若三點(diǎn)的“矩面積”為8,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果多邊形的每個內(nèi)角都比它相鄰的外角的4倍多30°,求這個多邊形的內(nèi)角和及對角線的總條數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com