【題目】如圖所示,將二次函數(shù)y=x2+2x+1的圖象沿x軸翻折,然后向右平移1個(gè)單位,再向上平移4個(gè)單位,得到二次函數(shù)y=ax2+bx+c的圖象.函數(shù)y=x2+2x+1的圖象的頂點(diǎn)為點(diǎn)A.函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)為點(diǎn)B,和x軸的交點(diǎn)為點(diǎn)C,D(點(diǎn)D位于點(diǎn)C的左側(cè)).
(1)求函數(shù)y=ax2+bx+c的解析式;
(2)從點(diǎn)A,C,D三個(gè)點(diǎn)中任取兩個(gè)點(diǎn)和點(diǎn)B構(gòu)造三角形,求構(gòu)造的三角形是等腰三角形的概率;
(3)若點(diǎn)M是線(xiàn)段BC上的動(dòng)點(diǎn),點(diǎn)N是△ABC三邊上的動(dòng)點(diǎn),是否存在以AM為斜邊的Rt△AMN,使△AMN的面積為△ABC面積的?若存在,求tan∠MAN的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)解析式為y=﹣x2+4;(2)構(gòu)造的三角形是等腰三角形的概率是;(3)存在,tan∠MAN的值為1或4或.
【解析】(1)利用配方法得到y=x2+2x+1=(x+1)2,然后根據(jù)拋物線(xiàn)的變換規(guī)律求解;
(2)利用頂點(diǎn)式y=(x+1)2得到A(﹣1,0),解方程﹣x2+4=0得D(﹣2,0),C(2,0)易得B(0,4),列舉出所有的三角形,再計(jì)算出AC=3,AD=1,CD=4,AB=,BC=2,BD=2,然后根據(jù)等腰三角形的判定方法和概率公式求解;
(3)易得BC的解析是為y=﹣2x+4,S△ABC=6,M點(diǎn)的坐標(biāo)為(m,﹣2m+4)(0≤m≤2),討論:①當(dāng)N點(diǎn)在AC上,如圖1,利用面積公式得到(m+1)(﹣2m+4)=2,解得m1=0,m2=1,當(dāng)m=0時(shí),求出AN=1,MN=4,再利用正切定義計(jì)算tan∠MAC的值;當(dāng)m=1時(shí),計(jì)算出AN=2,MN=2,再利用正切定義計(jì)算tan∠MAC的值;②當(dāng)N點(diǎn)在BC上,如圖2,先利用面積法計(jì)算出AN=,再根據(jù)三角形面積公式計(jì)算出MN=,然后利用正切定義計(jì)算tan∠MAC的值;③當(dāng)N點(diǎn)在AB上,如圖3,作AH⊥BC于H,設(shè)AN=t,則BN=﹣t,由②得AH=,利用勾股定理可計(jì)算出BH=,證明△BNM∽△BHA,利用相似比可得到MN=,利用三角形面積公式得到(﹣t)=2,根據(jù)此方程沒(méi)有實(shí)數(shù)解可判斷點(diǎn)N在AB上不符合條件,從而得到tan∠MAN的值為1或4或.
(1)y=x2+2x+1=(x+1)2的圖象沿x軸翻折,得y=﹣(x+1)2,
把y=﹣(x+1)2向右平移1個(gè)單位,再向上平移4個(gè)單位,得y=﹣x2+4,
∴所求的函數(shù)y=ax2+bx+c的解析式為y=﹣x2+4;
(2)∵y=x2+2x+1=(x+1)2,
∴A(﹣1,0),
當(dāng)y=0時(shí),﹣x2+4=0,解得x=±2,則D(﹣2,0),C(2,0);
當(dāng)x=0時(shí),y=﹣x2+4=4,則B(0,4),
從點(diǎn)A,C,D三個(gè)點(diǎn)中任取兩個(gè)點(diǎn)和點(diǎn)B構(gòu)造三角形的有:△ACB,△ADB,△CDB,
∵AC=3,AD=1,CD=4,AB=,BC=2,BD=2,
∴△BCD為等腰三角形,
∴構(gòu)造的三角形是等腰三角形的概率=;
(3)存在,
易得BC的解析是為y=﹣2x+4,S△ABC=ACOB=×3×4=6,
M點(diǎn)的坐標(biāo)為(m,﹣2m+4)(0≤m≤2),
①當(dāng)N點(diǎn)在AC上,如圖1,
∴△AMN的面積為△ABC面積的,
∴(m+1)(﹣2m+4)=2,解得m1=0,m2=1,
當(dāng)m=0時(shí),M點(diǎn)的坐標(biāo)為(0,4),N(0,0),則AN=1,MN=4,
∴tan∠MAC==4;
當(dāng)m=1時(shí),M點(diǎn)的坐標(biāo)為(1,2),N(1,0),則AN=2,MN=2,
∴tan∠MAC==1;
②當(dāng)N點(diǎn)在BC上,如圖2,
BC==2,
∵BCAN=ACBC,解得AN=,
∵S△AMN=ANMN=2,
∴MN==,
∴∠MAC=;
③當(dāng)N點(diǎn)在AB上,如圖3,作AH⊥BC于H,設(shè)AN=t,則BN=﹣t,
由②得AH=,則BH=,
∵∠NBG=∠HBA,
∴△BNM∽△BHA,
∴,即,
∴MN=,
∵ANMN=2,
即(﹣t)=2,
整理得3t2﹣3t+14=0,△=(﹣3)2﹣4×3×14=﹣15<0,方程沒(méi)有實(shí)數(shù)解,
∴點(diǎn)N在AB上不符合條件,
綜上所述,tan∠MAN的值為1或4或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉?chǎng)購(gòu)物的支付方式更加多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了一份調(diào)查問(wèn)卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問(wèn)題:
(1)這次活動(dòng)共調(diào)查了 人;在扇形統(tǒng)計(jì)圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.觀(guān)察此圖,支付方式的“眾數(shù)”是“ ”;
(3)在一次購(gòu)物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進(jìn)行支付,請(qǐng)用畫(huà)樹(shù)狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)中學(xué)生體質(zhì)健康綜合評(píng)定成績(jī)?yōu)?/span>x分,滿(mǎn)分為100分.規(guī)定:85≤x≤100為A級(jí),75≤x<85為B級(jí),60≤x<75為C級(jí),x<60為D級(jí).現(xiàn)隨機(jī)抽取福海中學(xué)部分學(xué)生的綜合評(píng)定成績(jī),整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中的信息,解答下列問(wèn)題:
(1)在這次調(diào)查中,一共抽取了________名學(xué)生,a=________%;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中C級(jí)對(duì)應(yīng)的圓心角為________度;
(4)若該校共有2 000名學(xué)生,請(qǐng)你估計(jì)該校D級(jí)學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新定義:對(duì)于關(guān)于x的一次函數(shù)y=kx+b(k≠0),我們稱(chēng)函數(shù)y=為一次函數(shù)y=kx+b(k≠0)的m變函數(shù)(其中m為常數(shù)).
例如:對(duì)于關(guān)于x的一次函數(shù)y=x+4的3變函數(shù)為y=
(1)關(guān)于x的一次函數(shù)y=-x+1的2變函數(shù)為,則當(dāng)x=4時(shí),= ;
(2)關(guān)于x的一次函數(shù)y=x+2的1變函數(shù)為,關(guān)于x的一次函數(shù)y=-x-2的-1變函數(shù)為,求函數(shù)和函數(shù)的交點(diǎn)坐標(biāo);
(3)關(guān)于x的一次函數(shù)y=2x+2的1變函數(shù)為,關(guān)于x的一次函數(shù)y=x-1,的m變函數(shù)為.
①當(dāng)-3≤x≤3時(shí),函數(shù)的取值范圍是 (直接寫(xiě)出答案):
②若函數(shù)和函數(shù)有且僅有兩個(gè)交點(diǎn),則m的取值范圍是 (直接寫(xiě)出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)為方便消費(fèi)者購(gòu)物,準(zhǔn)備將原來(lái)的階梯式自動(dòng)扶梯改造成斜坡式自動(dòng)扶梯.如圖所示,已知原階梯式自動(dòng)扶梯AB長(zhǎng)為10m,坡角∠ABD為30°;改造后的斜坡式自動(dòng)扶梯的坡角∠ACB為15°,請(qǐng)你計(jì)算改造后的斜坡式自動(dòng)扶梯AC的長(zhǎng)度,(結(jié)果精確到0.lm.溫馨提示:sin15°≈0.26,cosl5°≈0.97,tan15°≈0.27)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,對(duì)角線(xiàn)AC,BD交于點(diǎn)0,過(guò)點(diǎn)0的直線(xiàn)分別交邊AD,BC于點(diǎn)E,F(xiàn),EF=6.則AE2+BF2的值為( )
A. 9 B. 16 C. 18 D. 36
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過(guò)點(diǎn)0的直線(xiàn)AB交反比例函數(shù)y=的圖象于點(diǎn)A,B,點(diǎn)c在反比例函數(shù)y= (x>0)的圖象上,連結(jié)CA,CB,當(dāng)CA=CB且cos∠CAB= 時(shí),k1,k2應(yīng)滿(mǎn)足的數(shù)量關(guān)系是( )
A. k2=2kl B. k2=-2k1 C. k2=4k1 D. k2=-4k1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“十一”黃金周期間,某市在天中外出旅游的人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負(fù)數(shù)表示比前一天少的人數(shù))
日期 | 日 | 日 | 日 | 日 | 日 | 日 | 日 |
人數(shù)變化(萬(wàn)人) |
(1)若月日外出旅游人數(shù)為,那么月日外出旅游的人數(shù)是多少?
(2)請(qǐng)判斷七天內(nèi)外出旅游人數(shù)最多的是哪天?最少的是哪天?它們相差多少?
(3)如果最多一天有出游人數(shù)萬(wàn)人,那么若月日外出旅游的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市共有一中、二中、三中等3所高中,有一天所有高二學(xué)生參加了一次數(shù)學(xué)測(cè)試,閱卷后老師們對(duì)第10題進(jìn)行了分析,把每個(gè)學(xué)生的解答情況歸結(jié)為下列四類(lèi)情況之一:A(概念錯(cuò)誤),B(計(jì)算錯(cuò)誤),C(基本正確),D(完全正確).各校出現(xiàn)這四類(lèi)情況的人數(shù)占本校高二學(xué)生數(shù)的百分比見(jiàn)下面的條形統(tǒng)計(jì)圖:
已知一中高二學(xué)生有400名,這三所學(xué)校之問(wèn)高二學(xué)生人數(shù)的比例見(jiàn)扇形統(tǒng)計(jì)圖.
(1)求全市高二學(xué)生總數(shù);
(2)求全市解答完全正確的高二學(xué)生數(shù)占高二學(xué)生總數(shù)的百分比;
(3)請(qǐng)你對(duì)三中高二數(shù)學(xué)老師提一個(gè)值得關(guān)注的教學(xué)建議,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com