【題目】為踐行“綠水青山就是金山銀山”的重要思想,某森林保護區(qū)開展了尋找古樹活動.如圖,在一個坡度(或坡比)=1:2.4的山坡AB上發(fā)現(xiàn)有一棵占樹CD.測得古樹底端C到山腳點A的距離AC=26米,在距山腳點A水平距離6米的點E處,測得古樹頂端D的仰角∠AED=48°(古樹CD與山坡AB的剖面、點E在同一平面上,古樹CD與直線AE垂直),則古樹CD的高度約為( )(參考數(shù)據(jù):°≈0.73,cos8°≈0.67,tan48°≈1.11

A.17.0B.21.9C.23.3D.33.3

【答案】C

【解析】

如圖,根據(jù)已知條件得到=12.4=,設CF=5k,AF=12k,根據(jù)勾股定理得到AC==13k=26,求得AF=10,CF=24,得到EF=6+24=30,根據(jù)三角函數(shù)的定義即可得到結(jié)論.

解:如圖,∵=12.4=

∴設CF=5k,AF=12k

.AC==13k=26,解得.k=2,

AF=10,CF=24,

AE=6

EF=6+24=30,

∴∠DEF=48°

tan48°==1.11

DF=33.3

CD=33.3-10=23.3,答:古樹CD的高度約為23.3米,故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的布袋中裝有標著數(shù)字2,3,4,54個小球,這4個小球的材質(zhì)、大小和形狀完全相同,現(xiàn)從中隨機摸出兩個小球,這兩個小球上的數(shù)字之積大于9的概率為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】PQN中,若∠PQαα≤25°),則稱PQN差角三角形”,且∠P Q差角”.

1)已知ABC是等邊三角形,判斷ABC是否為差角三角形,并說明理由;

2)在ABC中,∠C90°,50°≤B≤70°,判斷ABC是否為差角三角形,若是,請寫出所有的差角并說明理由;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在抗擊新冠肺炎疫情期間,市場上防護口罩出現(xiàn)熱銷.某藥店用元購進甲,乙兩種不同型號的口罩共個進行銷售,已知購進甲種口罩與乙種口罩的費用相同,購進甲種口罩單價是乙種口罩單價的倍.

求購進的甲,乙兩種口罩的單價各是多少?

若甲,乙兩種口罩的進價不變,該藥店計劃用不超過元的資金再次購進甲,乙兩種口罩共個,求甲種口罩最多能購進多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】松山區(qū)種子培育基地用A,B,C三種型號的甜玉米種子共1500粒進行發(fā)芽試驗,從中選出發(fā)芽率高的種子進行推廣,通過試驗知道,C型號種子的發(fā)芽率為80%,根據(jù)試驗數(shù)據(jù)繪制了下面兩個不完整的統(tǒng)計圖:

1)求C型號種子的發(fā)芽數(shù);

2)通過計算說明,應選哪種型號的種子進行推廣?

3)如果將所有已發(fā)芽的種子放在一起,從中隨機取出一粒,求取到C型號發(fā)芽種子的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象在第一象限交于點,與軸的負半軸交于點,且

1)求一次函數(shù)的表達式;

2)在軸上是否存在一點,使得是以為腰的等腰三角形,若存在,求出點的坐標;若不存在,請說明理由.

3)反比例函數(shù)的圖象記為曲線,將向右平移3個單位長度,得曲線,則平移至處所掃過的面積是_________.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,從地面上的點A看一山坡上的電線桿PQ,測得桿頂端點P的仰角是45°,向前走9m到達B點,測得桿頂端點P和桿底端點Q的仰角分別是60°和30°.

1)求∠BPQ的度數(shù);

2)求該電線桿PQ的高度.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示的是一種折疊門,已知門框的寬度AD=2米,兩扇門的大小相同(AB=CD),且AB+CD=AD,現(xiàn)將右邊的門CDD1C1繞門軸DD1向外面旋轉(zhuǎn)67°(如圖2).

1)求點CAD的距離.

2)將左邊的門ABB1A1繞門軸AA1向外面旋轉(zhuǎn),設旋轉(zhuǎn)角為α(如圖3),問α為多少時,點B,C之間的距離最短?(參考數(shù)據(jù):sin67°≈0.92cos67°≈0.39,tan29.6°≈0.57,tan19.6°≈0.36,sin29.6°≈0.49

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某游泳池每次換水前后水的體積基本保持不變,當該游泳池以每小時300立方米的速度放水時,經(jīng)3小時能將池內(nèi)的水放完.設放水的速度為x立方米/時,將池內(nèi)的水放完需y小時.已知該游泳池每小時的最大放水速度為350立方米

1)求y關于x的函數(shù)表達式.

2)若該游泳池將放水速度控制在每小時200立方米至250立方米(含200立方米和250立方米),求放水時間y的范圍.

3)該游泳池能否在2.5小時內(nèi)將池內(nèi)的水放完?請說明理由.

查看答案和解析>>

同步練習冊答案