【題目】綜合與實(shí)踐

如圖,點(diǎn)是正方形的邊上一點(diǎn),點(diǎn)在線段上,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到線段,連接,過點(diǎn)的垂線,垂足為點(diǎn),交射線于點(diǎn)

探究發(fā)現(xiàn)

1)如圖1,若點(diǎn)是線段的中點(diǎn),直接寫出線段的數(shù)量關(guān)系為______;

2)如圖2,若點(diǎn)不是線段的中點(diǎn),線段的數(shù)量關(guān)系為______,填寫出證明過程;

3)當(dāng),時(shí),連接,則________

【答案】1;(2;過程見解析;(3915

【解析】

(1)ASA證明△PEQ≌△EGD,得出PQ=ED,即可得出結(jié)論;
(2)ASA證明△PEQ≌△EGD,得出PQ=ED,即可得出結(jié)論;
(3)①當(dāng)點(diǎn)P在線段BC上時(shí),點(diǎn)Q在線段BC上,由(2)可知:BP=EC-QC,求出DE=2,EC=4,即可得出答案;
②分類討論,當(dāng)點(diǎn)Q在線段BC上和點(diǎn)Q在線段BC的延長線上,分別由全等三角形的性質(zhì)得出BP,即可得出答案.

(1)BP+QC=EC;

理由如下:
∵四邊形ABCD是正方形,
BC=CD,∠BCD=90°,
由旋轉(zhuǎn)的性質(zhì)得:∠PEG=90°,EG=EP
∴∠PEQ+GEH=90°,
QHGD,
∴∠H=90°,∠G+GEH=90°,
∴∠PEQ=G,
又∵∠EPQ+PEC=90°,∠PEC+GED=90°,
∴∠EPQ=GED,
在△PEQ和△EGD中,

,
∴△PEQ≌△EGD(ASA),
PQ=ED,
BP+QC=BC-PQ=CD-ED=EC,
BP+QC=EC
故答案為:BP+QC=EC;
(2) BP+QC=EC

理由如下:
由題意得:∠PEG=90°,EG=EP
∴∠PEQ+GEH=90°,
QHGD,
∴∠H=90°,∠G+GEH=90°,
∴∠PEQ=G,
∵四邊形ABCD是正方形,
∴∠DCB=90°,BC=DC,
∴∠EPQ+PEC=90°,
∵∠PEC+GED=90°,
∴∠GED=EPQ,
在△PEQ和△EGD中,

,
∴△PEQ≌△EGD(ASA),
PQ=ED,
BP+QC=BC-PQ=CD-ED=EC,
BP+QC=EC;
(3)分兩種情況:
①當(dāng)點(diǎn)P在線段BC上時(shí),點(diǎn)Q在線段BC上,


(2)可知:BP=EC-QC
AB=3DE=6,
DE=2,EC=4,
BP=4-1=3,

;

②當(dāng)點(diǎn)P在線段BC上時(shí),點(diǎn)Q在線段BC的延長線上,如圖所示:


由題意得:∠PEG=90°,EG=EP,
∴∠PEQ+GEH=90°,
QHGD,
∴∠GHE=90°,∠G+GEH=90°,
∴∠PEQ=G,
∵四邊形ABCD是正方形,
∴∠DCB=90°,BC=DC,
∴∠EPQ+PEC=90°,
∵∠PEC+GED=90°,
∴∠GED=EPQ
在△PEQ和△EGD中,

,
∴△PEQ≌△EGD(ASA),

PQ=DE=2
QC=1,
PC=PQ-QC=1,
BP=BC-PC=6-1=5,

;
綜上所述,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)yx+4的圖象與x軸交于點(diǎn)B,與y軸交于點(diǎn)C,二次函數(shù)yx2+bx+c的圖象經(jīng)過點(diǎn)A20)和點(diǎn)C,拋物線與x軸交于點(diǎn)A和點(diǎn)E(點(diǎn)A在點(diǎn)E的左側(cè)),連接AC,將△ABC沿AC折疊,得到點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)D

1)求二次函數(shù)的表達(dá)式;

2)求點(diǎn)D坐標(biāo),并判定點(diǎn)D是否在該二次函數(shù)的圖象上;

3)①在線段AC上找一點(diǎn)F,使得△OBF的周長最小,直接寫出此時(shí)點(diǎn)F的坐標(biāo).②在①的基礎(chǔ)上,過點(diǎn)F的一條直線與拋物線對(duì)稱軸右側(cè)部分交于點(diǎn)N,交線段AD于點(diǎn)M,連接NA、ND,使△AMF與△AMN的面積比為41,請直接寫出△AND的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前微信、支付寶共享單車網(wǎng)購給我們帶來了很多便利,初二數(shù)學(xué)小組在校內(nèi)對(duì)你最認(rèn)可的四大新生事物進(jìn)行了調(diào)查,隨機(jī)調(diào)查了人(每名學(xué)生必選一種且只能從這四種中選擇一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.

1)根據(jù)圖中信息求出=___________,=_____________;

2)請你幫助他們將這兩個(gè)統(tǒng)計(jì)圖補(bǔ)全;

3)根據(jù)抽樣調(diào)查的結(jié)果,請估算全校2000名學(xué)生種,大約有多少人最認(rèn)可微信這一新生事物?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yx22x3x軸兩交點(diǎn)之間的距離為_____.拋物線頂點(diǎn)、與x軸正半軸和y軸的交點(diǎn)圍成的三角形面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同一個(gè)圓的內(nèi)接正方形和正三角形的邊心距的比為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線ACBD交于點(diǎn)O,以OB為直徑畫圓M,過D作⊙M的切線,切點(diǎn)為N,分別交AC、BC于點(diǎn)EF,已知AE5,CE3,則DF的長是( 。

A. 3B. 4C. 4.8D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+2分別交x軸、y軸于點(diǎn)A、B.點(diǎn)C的坐標(biāo)是(﹣1,0),拋物線yax2+bx﹣2經(jīng)過A、C兩點(diǎn)且交y軸于點(diǎn)D.點(diǎn)Px軸上一點(diǎn),過點(diǎn)Px軸的垂線交直線AB于點(diǎn)M,交拋物線于點(diǎn)Q,連結(jié)DQ,設(shè)點(diǎn)P的橫坐標(biāo)為mm≠0).

(1)求點(diǎn)A的坐標(biāo).

(2)求拋物線的表達(dá)式.

(3)當(dāng)以B、D、Q,M為頂點(diǎn)的四邊形是平行四邊形時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為2的正方形ABCD,點(diǎn)P從點(diǎn)A出發(fā)以每秒1個(gè)單位長度的速度沿ADC的路徑向點(diǎn)C運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)以每秒2個(gè)單位長度的速度沿BCDA的路徑向點(diǎn)A運(yùn)動(dòng),當(dāng)Q到達(dá)終點(diǎn)時(shí),P停止移動(dòng),設(shè)△PQC的面積為S,運(yùn)動(dòng)時(shí)間為t秒,則能大致反映St的函數(shù)關(guān)系的圖象是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,.已知A-2,0)、B60)、D03)反比例函數(shù)的圖象經(jīng)過點(diǎn)

1)求點(diǎn)的坐標(biāo)和反比例函數(shù)的解析式;

2)將四邊形沿軸向上平移個(gè)單位長度得到四邊形,問點(diǎn)是否落在(1)中的反比例函數(shù)的圖象上?

查看答案和解析>>

同步練習(xí)冊答案