【題目】閱讀材料:
若a,b都是非負(fù)實數(shù),則a+b≥2.當(dāng)且僅當(dāng)a=b時,“=”成立.
證明: ∵(-)2≥0,∴a-2+b≥0.
∴a+b≥2.當(dāng)且僅當(dāng)a=b時,“=”成立.
舉例應(yīng)用:
已知x>0,求函數(shù)y=2x+的最小值.
解:y=2x+≥2=4.當(dāng)且僅當(dāng)2x=,即x=1時,“=”成立.
當(dāng)x=1時,函數(shù)取得最小值,y最小=4.
問題解決:
汽車的經(jīng)濟時速是指汽車最省油的行駛速度.某種汽車在每小時70~110公里之間行駛(含70公里和110公里),每公里耗油(+)升.若該汽車以每小時x公里的速度勻速行駛,1小時的耗油量為y升.
(1)求y關(guān)于x的函數(shù)關(guān)系式(寫出自變量x的取值范圍);
(2)求該汽車的經(jīng)濟時速及經(jīng)濟時速的百公里耗油量(結(jié)果保留小數(shù)點后一位).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地為了鼓勵居民節(jié)約用水,決定實行兩級收費制,即每月用水量不超過15噸(含15噸)時,每噸按政府補貼優(yōu)惠價收費;每月超過15噸時,超過部分每噸按市場調(diào)節(jié)價收費.小明家1月份用水23噸,交水費35元,2月份用水19噸,交水費25元.
(1)求每噸水的政府補貼優(yōu)惠價與市場調(diào)節(jié)價分別是多少;
(2)小明家3月份用水24噸,他家應(yīng)交水費多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明不小心把一塊三角形形狀的玻璃打碎成了三塊,如圖①②③,他想要到玻璃店去配一塊大小形狀完全一樣的玻璃,你認(rèn)為應(yīng)帶( 。
A. ① B. ② C. ③ D. ①和②
【答案】C
【解析】試題分析:根據(jù)全等三角形的判定方法帶③去可以利用“角邊角”得到全等的三角形.
故選C.
考點:全等三角形的應(yīng)用.
【題型】單選題
【結(jié)束】
12
【題目】如圖,要測量池塘的寬度AB,在池塘外選取一點P,連接AP、BP并各自延長,使PC=PA,PD=PB,連接CD,測得CD長為25m,則池塘寬AB為________m,依據(jù)是________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡,再求值:
(1)(1+a)(1-a)+(a-2)2,其中a=;
(2)(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=-3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知∠ACB=90°,AB=10cm,AC=8cm,動點P從點A出發(fā),以2cm/s的速度沿線段AB向點B運動.在運動過程中,當(dāng)△APC為等腰三角形時,點P出發(fā)的時刻t可能的值為( )
A. 5 B. 5或8 C. D. 4或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人兩次同時在同一家糧店購買糧食(假設(shè)兩次購買糧食的單價不相同),甲每次購買
糧食100千克,乙每次購買糧食用去100元.
(1)假設(shè)、分別表示兩次購買糧食時的單價(單位:元/千克),試用含、的代數(shù)式表示:甲兩次購
買糧食共需付款 元,乙兩次共購買 千克糧食;若甲兩次購買糧食的平均單價為每千
克元,乙兩次購買糧食的平均單價為每千克元,則= ,= .
(2)若誰兩次購買糧食的平均單價低,誰購買糧食的方式就較合算.請你判斷甲、乙兩人購買糧食的方式哪一個較合算,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥PN∥CD.
(1)試探索∠ABC,∠BCP和∠CPN之間的數(shù)量關(guān)系,并說明理由;
(2)若∠ABC=42°,∠CPN=155°,求∠BCP的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有兩枚質(zhì)地均勻的正方體骰子,每枚骰子的六個面上都分別標(biāo)有數(shù)字1、2、3、4、5、6.同時投擲這兩枚骰子,以朝上一面所標(biāo)的數(shù)字為擲得的結(jié)果,那么所得結(jié)果之和為9的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝廠計劃生產(chǎn)A,B兩款校服共500件,這兩款校服的成本、售價如表所示:
價格 類別 | 成本(元/件) | 售價(元/件) |
A款 | 30 | 45 |
B款 | 50 | 70 |
(1)求校服廠家銷售完這批校服時所獲得的利潤y(元)與A款校服的生產(chǎn)數(shù)量x(件)之間的函數(shù)關(guān)系.
(2)若廠家計劃B款校服的生產(chǎn)數(shù)量不超過A款校服的生產(chǎn)數(shù)量的4倍,應(yīng)怎樣安排生產(chǎn)才能使校服廠家在銷售完這批校服時獲得利潤最多?此時獲得利潤為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com