【題目】某地為了鼓勵居民節(jié)約用水,決定實行兩級收費制,即每月用水量不超過15(15)時,每噸按政府補貼優(yōu)惠價收費;每月超過15噸時,超過部分每噸按市場調節(jié)價收費.小明家1月份用水23噸,交水費35元,2月份用水19噸,交水費25元.

(1)求每噸水的政府補貼優(yōu)惠價與市場調節(jié)價分別是多少;

(2)小明家3月份用水24噸,他家應交水費多少元?

【答案】(1) 每噸水的政府補貼優(yōu)惠價為1元,市場調節(jié)價為2.5;(2) 小明家3月份應交水費37.5

【解析】試題分析:1設每噸水的政府補貼優(yōu)惠價為x元,市場調節(jié)價為y元,題中有兩個等量關系:①用水23噸,交水費35元;②2月份用水19噸,交水費25元.據(jù)此列出方程組,求解此方程組即可;
2)小明家3月份交水費,將(1)中所求值代入計算即可.

試題解析:(1) 設每噸水的政府補貼優(yōu)惠價為x元,市場調節(jié)價為y.

根據(jù)題意可得:

解得:

答:每噸水的政府補貼優(yōu)惠價為1元,市場調節(jié)價為2.5.

(2)x=1,y=2.5,15×1+(2415)×2.5=37.5,

答:小明家3月份應交水費37.5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一拱形公路橋,圓弧形橋拱的水面跨度AB80 m,橋拱到水面的最大高度為20 m.(1)求橋拱的半徑.

(2)現(xiàn)有一艘寬60 m,頂部截面為長方形且高出水面9 m的輪船要經過這座拱橋,這艘輪船能順利通過嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一只不透明的袋子中裝有4個大小、質地都相同的乒乓球,球面上分別標有數(shù)字1、2、3、4.

(1)攪勻后從中任意摸出1個球,求摸出的乒乓球球面上數(shù)字為1的概率;

(2)攪勻后先從中任意摸出1個球(不放回),再從余下的3個球中任意摸出1個球,求2次摸出的乒乓球球面上數(shù)字之和為偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,下列結論中不正確的是( 。

A. AB=BC時,它是菱形 B. ACBD時,它是菱形

C. 當∠ABC=90°時,它是矩形 D. AC=BD時,它是正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某港口位于東西方向的海岸線上.遠航號、海天號輪船同時離開港口,各自沿一固定方向航行,遠航號每小時航行16海里,海天號每小時航行12海里.它們離開港口一個半小時后相距30海里.如果知道遠航號沿東北方向航行,能知道海天號沿哪個方向航行?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】y=x2的圖象向上平移2個單位.

1求新圖象的解析式、頂點坐標和對稱軸;

2畫出平移后的函數(shù)圖象

3求平移后的函數(shù)的最大值或最小值,并求對應的x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點PRtABC斜邊AB上一動點(不與點A,B重合),分別過點A,B向直線CP作垂線,垂足分別為點E,F(xiàn),Q為斜邊AB的中點

(1)如圖①,當點P與點Q重合時,AEBF的位置關系是________,QEQF的數(shù)量關系是________

(2)如圖②,當點P在線段AB上且不與點Q重合時,試判斷QEQF的數(shù)量關系,并說明理由

(溫馨提示:直角三角形斜邊上的中線等于斜邊的一半)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】健身運動已成為時尚,某公司計劃組裝、兩種型號的健身器材共套,捐給社區(qū)健身中心。組裝一套型健身器材需甲種部件個和乙種部件個,組裝一套型健身器材需甲種部件個和乙種部件個.公司現(xiàn)有甲種部件個,乙種部件個.

)公司在組裝、兩種型號的健身器材時,共有多少種組裝方案?

)組裝一套型健身器材需費用元,組裝一套型健身器材需費用元,求總組裝費用最少的組裝方案,并求出最少組裝費用?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:

a,b都是非負實數(shù),ab2.當且僅當ab,”成立.

證明: ()20a2b0.

ab2.當且僅當ab,”成立.

舉例應用:

已知x>0,求函數(shù)y2x的最小值.

解:y2x≥2=4.當且僅當2x,x=1時=”成立.

x=1時,函數(shù)取得最小值,y最小4.

問題解決:

汽車的經濟時速是指汽車最省油的行駛速度.某種汽車在每小時70~110公里之間行駛(含70公里和110公里)每公里耗油()升.若該汽車以每小時x公里的速度勻速行駛,1小時的耗油量為y升.

(1)求y關于x的函數(shù)關系式(寫出自變量x的取值范圍);

(2)求該汽車的經濟時速及經濟時速的百公里耗油量(結果保留小數(shù)點后一位).

查看答案和解析>>

同步練習冊答案