【題目】把兩個全等的等腰直角三角板(直角邊長為4)疊放在一起,且三角板EFG的直角頂點G位于三角板ABC的斜邊中點處.現(xiàn)將三角板EFG繞G點按順時針方向旋轉(zhuǎn)α度(0°<α<90°)(如圖1),四邊形GKCH為兩三角板的重疊部分.

(1)猜想BH與CK有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;
(2)連接HK(如圖2),在上述旋轉(zhuǎn)過程中,設(shè)BH=x,△GKH的面積為y,
①求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
②當(dāng)△GKH的面積恰好等于△ABC面積的 ,求x.

【答案】
(1)

解:BH=CK.

理由如下:∵點O是等腰直角三角板ABC斜邊中點,

∴∠B=∠GCK=45°,BG=CG,

由旋轉(zhuǎn)的性質(zhì),知∠BGH=∠CGK,

在△BGH和△CGK中,

∴△BGH≌△CGK(ASA),

∴BH=CK;


(2)

解:①∵△BGH≌△CGK,

∴S四邊形CHGK=SCGK+SCGH=SBGH+SCGH=SBCG= SABC=4,

∴SGKH=S四邊形CHGK﹣SKCH=4﹣ CH×CK,

∴y= x2﹣2x+4(0<x<4),

②當(dāng)y= ×8= 時,即 x2﹣2x+4=

∴x=1 或x=3.

∴當(dāng)△GKH的面積恰好等于△ABC面積的 時,BH=1 或BH=3.


【解析】(1)先由ASA證出△CGK≌△BGH,再根據(jù)全等三角形的性質(zhì)得出BH=CK,根據(jù)全等得出四邊形CKGH的面積等于三角形ACB面積一半;(2)①由(1)易得S四邊形CHGK= SABC , 然后根據(jù)面積公式得出y= x2﹣2x+4;②根據(jù)△GKH的面積恰好等于△ABC面積的 ,代入得出方程即可求得結(jié)果.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:

如圖1,在四邊形ABCD中,ABAD,∠BAD=120°,∠B=∠ADC=90°,EF分別是BC,CD上的點,且∠EAF=60°,探究圖中線段BEEF,FD之間的數(shù)量關(guān)系.

小王同學(xué)探究此問題的方法是延長FD到點G,使DGBE,連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是__________________;

探索延伸:

如圖2,若在四邊形ABCD中,ABADBD=180°,E,F分別是BC,CD上的點,且∠EAFBAD,上述結(jié)論是否仍然成立,并說明理由;

結(jié)論應(yīng)用:

如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O)北偏西30°A處,艦艇乙在指揮中心南偏東70°B處,并且兩艦艇到指揮中心的距離相等.接到行動指令后,艦艇甲向正東方向以50海里/小時的速度前進,艦艇乙沿北偏東50°的方向以60海里/小時的速度前進,1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達E,F處,且兩艦艇與指揮中心O之間夾角∠EOF=70°,試求此時兩艦艇之間的距離.

能力提高:

如圖4,等腰直角三角形ABC中,∠BAC=90°,ABAC,點MN在邊BC上,且∠MAN=45°.若BM=5,CN=12,則MN的長為_________(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了綠化校園,計劃購買一批榕樹和香樟樹,經(jīng)市場調(diào)查,榕樹的單價比香樟樹少20,購買3棵榕樹和2棵香樟樹共需340.

(1)榕樹和香樟樹的單價各是多少?

(2)根據(jù)學(xué)校實際情況,需購買兩種樹苗共150,總費用不超過10840,且購買香樟樹的棵數(shù)不少于榕樹的1.5,請你算算該校本次購買榕樹和香樟樹共有哪幾種方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)興趣小組在活動時,老師提出了這樣一個問題:如圖1,在△ABC中,AB=8,AC=6DBC的中點,求BC邊上的中線AD的取值范圍.

小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長ADE,使DE=AD,再證明“△ADC≌△EDB”.

(1)探究得出AD的取值范圍是_____;

(2)(問題解決)如圖2,△ABC中,∠B=90°,AB=2,AD是△ABC的中線,CEBC,CE=4,且∠ADE=90°,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在5×4正方形網(wǎng)格中,有A,B,C三個格點(線與線的交點).

(1)若小正方形邊長為1,則AC= , AB=;
(2)在圖中再找出一個格點D,滿足:D與A,B,C三點中的兩點組成的三角形恰好與△ABC相似:∽△ABC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在等腰直角△ABC中,∠B=90°,將△ABC繞點 A逆時針旋轉(zhuǎn)60°后得到的△AB′C′,則∠BAC′等于(

A.105°
B.120°
C.135°
D.150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+2x+m.
(1)如果二次函數(shù)的圖象與x軸有兩個交點,求m的取值范圍;
(2)如圖,二次函數(shù)的圖象過點A(3,0),與y軸交于點B,直線AB與這個二次函數(shù)圖象的對稱軸交于點P,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】飛機著陸后滑行的距離S(單位:m)關(guān)于滑行時間t(單位:s)的函數(shù)解析式是:S=60t﹣1.5t2
(1)直接指出飛機著陸時的速度;
(2)直接指出t的取值范圍;
(3)畫出函數(shù)S的圖象并指出飛機著陸后滑行多遠才能停下來?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市有一塊長為(2a+b)米,寬為(a+b)米的長方形地塊,規(guī)劃部門計劃將陰影部分進行綠化,中間將修建一座雕像.

(1)試用含a,b的代數(shù)式表示綠化的面積是多少平方米?

(2)若a=3,b=2,請求出綠化面積.

查看答案和解析>>

同步練習(xí)冊答案