【題目】已知二次函數(shù)y=﹣x2+2x+m.
(1)如果二次函數(shù)的圖象與x軸有兩個交點(diǎn),求m的取值范圍;
(2)如圖,二次函數(shù)的圖象過點(diǎn)A(3,0),與y軸交于點(diǎn)B,直線AB與這個二次函數(shù)圖象的對稱軸交于點(diǎn)P,求點(diǎn)P的坐標(biāo).

【答案】
(1)解:∵二次函數(shù)的圖象與x軸有兩個交點(diǎn),

∴△=22+4m>0

∴m>﹣1;


(2)解:∵二次函數(shù)的圖象過點(diǎn)A(3,0),

∴0=﹣9+6+m

∴m=3,

∴二次函數(shù)的解析式為:y=﹣x2+2x+3,

令x=0,則y=3,

∴B(0,3),

設(shè)直線AB的解析式為:y=kx+b,

,

解得: ,

∴直線AB的解析式為:y=﹣x+3,

∵拋物線y=﹣x2+2x+3,的對稱軸為:x=1,

∴把x=1代入y=﹣x+3得y=2,

∴P(1,2).


【解析】(1)由二次函數(shù)的圖象與x軸有兩個交點(diǎn),得到△=22+4m>0于是得到m>﹣1;(2)把點(diǎn)A(3,0)代入二次函數(shù)的解析式得到m=3,于是確定二次函數(shù)的解析式為:y=﹣x2+2x+3,求得B(0,3),得到直線AB的解析式為:y=﹣x+3,把對稱軸方程x=1,代入直線y=﹣x+3即可得到結(jié)果.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用拋物線與坐標(biāo)軸的交點(diǎn)的相關(guān)知識可以得到問題的答案,需要掌握一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時,圖像與x軸有兩個交點(diǎn);當(dāng)b2-4ac=0時,圖像與x軸有一個交點(diǎn);當(dāng)b2-4ac<0時,圖像與x軸沒有交點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C、D、E三點(diǎn)在同一直線上,連接BD.

(1)求證:△BAD≌△CAE;

(2)試猜想BD、CE有何特殊位置關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ADF△BCE中,∠A=∠B,點(diǎn)D、E、F、C在同﹣直線上,有如下三個關(guān)系式:①AD=BC;②DE=CF;③BE∥AF。

(1)請用其中兩個關(guān)系式作為條件,另一個作為結(jié)論,寫出所有你認(rèn)為正確的命題.(用序號寫出命題書寫形式,如:如果①、②,那么③)

(2)選擇(1)中你寫出的一個命題,說明它正確的理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把兩個全等的等腰直角三角板(直角邊長為4)疊放在一起,且三角板EFG的直角頂點(diǎn)G位于三角板ABC的斜邊中點(diǎn)處.現(xiàn)將三角板EFG繞G點(diǎn)按順時針方向旋轉(zhuǎn)α度(0°<α<90°)(如圖1),四邊形GKCH為兩三角板的重疊部分.

(1)猜想BH與CK有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;
(2)連接HK(如圖2),在上述旋轉(zhuǎn)過程中,設(shè)BH=x,△GKH的面積為y,
①求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
②當(dāng)△GKH的面積恰好等于△ABC面積的 ,求x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖所示 AD、AE分別是△ABC的中線、高,且AB=5cm,AC=3cm,,△ABD△ACD的周長之差為_________,△ABD△ACD的面積關(guān)系為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將△ABC繞O點(diǎn)順時針旋轉(zhuǎn)50°得△A1B1C1(A、B分別對應(yīng)A1、B1),則直線AB與直線A1B1的夾角(銳角)為( )
A.130°
B.50°
C.40°
D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC中,∠ABC=65°,AB=AC,BAD=20°,AD=AE,求∠EDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(﹣3,0),該拋物線的對稱軸為直線x=﹣1,若點(diǎn)C(﹣ ,y1),D(﹣ ,y2),E( ,y3)均為函數(shù)圖象上的點(diǎn),則y1 , y2 , y3的大小關(guān)系為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC=2,B=40°,點(diǎn)D在線段BC上運(yùn)動(D不與B、C重合),連接AD,作ADE=40°,DE交線段AC于E.

(1)當(dāng)BDA=115°時,BAD= °;點(diǎn)D從B向C運(yùn)動時,BDA逐漸變 (填“大”或“小”);

(2)當(dāng)DC等于多少時,ABD≌△DCE,請說明理由;

(3)在點(diǎn)D的運(yùn)動過程中,ADE的形狀也在改變,判斷當(dāng)BDA等于多少度時,ADE是等腰三角形.

查看答案和解析>>

同步練習(xí)冊答案