【題目】如圖,平行四邊形ABCD中,以A為圓心,AB為半徑的圓交ADF,交BCG,延長(zhǎng)BA交圓于E.

(1)若ED與⊙A相切,試判斷GD與⊙A的位置關(guān)系,并證明你的結(jié)論;

(2)在(1)的條件不變的情況下,若GC=CD,求∠C.

【答案】GD與⊙A相切.理由見(jiàn)解析;(2) 120°

【解析】分析:(1)連接,由角的等量關(guān)系可以證出∠1=2,然后證明得到
(2)由(1)知根據(jù)角間的等量關(guān)系,解出∠6,繼而求出的值.

詳解:(1)結(jié)論:GD與⊙O相切。理由如下:

連接AG.

∵點(diǎn)G、E在圓上,

AG=AE.

∵四邊形ABCD是平行四邊形,

ADBC.

∴∠B=1,2=3.

AB=AG

∴∠B=3.

∴∠1=2.

在△AED和△AGD中,

∴△AED≌△AGD.

∴∠AED=AGD.

ED與⊙A相切,

AGDG.

GD與⊙A相切.

(2)GC=CD,四邊形ABCD是平行四邊形,

AB=DC,4=5,AB=AG.

ADBC,

∴∠4=6.

∴∠2=26.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖中折線(xiàn)ABC表示從甲地向乙地打長(zhǎng)途電話(huà)時(shí)所需付的電話(huà)費(fèi)y(元)與通話(huà)時(shí)間t(分鐘)之間的關(guān)系圖象.

1)從圖象知,通話(huà)2分鐘需付的電話(huà)費(fèi)是   元;

2)當(dāng)t≥3時(shí)求出該圖象的解析式(寫(xiě)出求解過(guò)程);

3)通話(huà)7分鐘需付的電話(huà)費(fèi)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,每個(gè)圖案均由邊長(zhǎng)相等的黑、白兩色正方形按規(guī)律拼接而成,照此規(guī)律,第n個(gè)圖案中白色正方形比黑色正方形多________個(gè).(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

1)-37;

2 ;

3)-0.5+(15.5)(17)|12|

4 ;

5 ;

6(用簡(jiǎn)便方法計(jì)算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一條不完整的數(shù)軸上從左到右有點(diǎn)A,B,C,其中AB=2,BC=1,如圖所示. 設(shè)點(diǎn)A,B,C所對(duì)應(yīng)數(shù)的和是p.

(1)若以B為原點(diǎn),則點(diǎn)A,C所對(duì)應(yīng)的數(shù)為 ,p的值為 ;若以C為原點(diǎn),p 的值為 ;

(2)若原點(diǎn)O在圖中數(shù)軸上點(diǎn)C的右邊,且CO=28,求p的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC為直角三角形,∠C=90°,BC=2cm,A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點(diǎn)C、B、E、F在同一條直線(xiàn)上,點(diǎn)B與點(diǎn)E重合.RtABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí)停止.設(shè)RtABC與矩形DEFG的重疊部分的面積為ycm2,運(yùn)動(dòng)時(shí)間xs.能反映ycm2xs之間函數(shù)關(guān)系的大致圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC,C=90°,AC=BC= ,將△ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)60°到△ABC′的位置,連接CB,CB的長(zhǎng)為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線(xiàn)AC相交于點(diǎn)F,設(shè)DE=x.

(1)用含x的代數(shù)式表示線(xiàn)段CF的長(zhǎng);

(2)如果把CAE的周長(zhǎng)記作CCAEBAF的周長(zhǎng)記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出它的定義域;

(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩個(gè)邊長(zhǎng)分別為a,b(a>b)的正方形連在一起,三點(diǎn)C,B,F(xiàn)在同一直線(xiàn)上,反比例函數(shù)y=在第一象限的圖象經(jīng)過(guò)小正方形右下頂點(diǎn)E.若OB2﹣BE2=10,則k的值是( 。

A. 3 B. 4 C. 5 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案