【題目】圖中折線ABC表示從甲地向乙地打長(zhǎng)途電話時(shí)所需付的電話費(fèi)y(元)與通話時(shí)間t(分鐘)之間的關(guān)系圖象.

1)從圖象知,通話2分鐘需付的電話費(fèi)是   元;

2)當(dāng)t≥3時(shí)求出該圖象的解析式(寫出求解過程);

3)通話7分鐘需付的電話費(fèi)是多少元?

【答案】(1)2.4(2)(3)8.4

【解析】

1)直接觀察圖像,即可得出t=2時(shí),y=2.4,即通話2分鐘需付的電話費(fèi)是2.4元;

2)通過觀察圖像,t≥3時(shí),yt之間的關(guān)系是一次函數(shù),由圖像得知B、C兩點(diǎn)坐標(biāo),設(shè)解析式,代入即可得解;

3)把t=7直接代入(2)中求得的函數(shù)解析式,即可得出y=8.4,即通話7分鐘需付的電話費(fèi)是8.4.

解:(2)由圖得B3,2.4),C5,5.4

設(shè)直線BC的表達(dá)式為,

解得

直線BC的表達(dá)式為.

(3)把x=7代入

解得y=8.4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Sna1+a2+…+an,令Tn,稱Tna1,a2,an這列數(shù)的神秘?cái)?shù).已知a1,a2,,a500神秘?cái)?shù)1503,那么6,a1,a2,a500神秘?cái)?shù)為( 。

A.1504B.1506C.1508D.1510

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一個(gè)長(zhǎng)為、寬為的長(zhǎng)方形(其中,均為正數(shù),且),沿圖中虛線用剪刀均勻分成四塊相同小長(zhǎng)方形,然后按圖2方式拼成一個(gè)大正方形.

1 2

1)圖2中大正方形的邊長(zhǎng)為 ;小正方形(陰影部分)的邊長(zhǎng)為 .(用含的代數(shù)式表示)

2)仔細(xì)觀察圖2,請(qǐng)你寫出下列三個(gè)代數(shù)式:所表示的圖形面積之間的相等關(guān)系,并選取適合,的數(shù)值加以驗(yàn)證.

3)已知.則代數(shù)式的值為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了培養(yǎng)學(xué)生勤儉節(jié)約的意識(shí),從小養(yǎng)成良好的生活習(xí)慣.某校隨機(jī)抽查部分初中生對(duì)勤儉節(jié)約的態(tài)度(態(tài)度分為:贊成、無所謂、反對(duì)),并對(duì)抽查對(duì)象的態(tài)度繪制成了圖1和圖2兩個(gè)統(tǒng)計(jì)圖(統(tǒng)計(jì)圖不完整),請(qǐng)根據(jù)圖中的信息解答下列問題:

(1)此次共抽查   名學(xué)生;

(2)持反對(duì)意見的學(xué)生人數(shù)占整體的   %,無所謂意見的學(xué)生人數(shù)占整體的   %;

(3)估計(jì)該校1200名初中生中,大約有   名學(xué)生持反對(duì)態(tài)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線L:y=-x+2x軸、y軸分別交于A、B兩點(diǎn),在y軸上有一點(diǎn)C(0,4),動(dòng)點(diǎn)MA點(diǎn)以每秒1個(gè)單位的速度沿x軸向左移動(dòng).

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)△COM的面積SM的移動(dòng)時(shí)間t之間的函數(shù)關(guān)系式;

(3)當(dāng)t為何值時(shí)△COM≌△AOB,并求此時(shí)M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算

1)(﹣8)﹣(﹣5+(﹣2

2)﹣12×2+(﹣22÷4﹣(﹣3

(3)化簡(jiǎn)求值:3ab22a2 b)﹣2ab2a2 b),其中a=-1,b=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,貨輪O在航行過程中,發(fā)現(xiàn)燈塔A在它南偏東60°的方向上,同時(shí),在它北偏東30°、西北(即北偏西45°)方向上又分別發(fā)現(xiàn)了客輪B和海島C

1)仿照表示燈塔方位的方法,分別畫出表示客輪B和海島C方向的射線OBOC(不寫作法);

2)若圖中有一艘漁船D,且∠AOD的補(bǔ)角是它的余角的3倍,求出∠AOD的度數(shù);

3)畫出表示漁船D方向的射線OD,則漁船D在貨輪O  (寫出方位角)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將30°的直角三角尺ABC繞直角頂點(diǎn)A逆時(shí)針旋轉(zhuǎn)到ADE的位置,使B點(diǎn)的對(duì)應(yīng)點(diǎn)D落在BC邊上,連接EB、EC,則下列結(jié)論:①∠DAC=DCA;EDAC的垂直平分線;③∠BED=30°;ED=2AB.其中正確的是( 。

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,以A為圓心,AB為半徑的圓交ADF,交BCG,延長(zhǎng)BA交圓于E.

(1)若ED與⊙A相切,試判斷GD與⊙A的位置關(guān)系,并證明你的結(jié)論;

(2)在(1)的條件不變的情況下,若GC=CD,求∠C.

查看答案和解析>>

同步練習(xí)冊(cè)答案