【題目】2016年3月27日“麗水半程馬拉松競賽”在蓮都舉行,某運動員從起點萬地廣場西門出發(fā),途經(jīng)紫金大橋,沿比賽路線跑回中點萬地廣場西門.設(shè)該運動員離開起點的路程S(千米)與跑步時間t(分鐘)之間的函數(shù)關(guān)系如圖所示,其中從起點到紫金大橋的平均速度是0.3千米/分,用時35分鐘,根據(jù)圖象提供的信息,解答下列問題:
(1)求圖中a的值;
(2)組委會在距離起點2.1千米處設(shè)立一個拍攝點C,該運動員從第一次經(jīng)過C點到第二次經(jīng)過C點所用的時間為68分鐘.
①求AB所在直線的函數(shù)解析式;
②該運動員跑完賽程用時多少分鐘?
【答案】
(1)
解:∵從起點到紫金大橋的平均速度是0.3千米/分,用時35分鐘,
∴a=0.3×35=10.5千米
(2)
解:①∵線段OA經(jīng)過點O(0,0),A(35,10.5),
∴直線OA解析式為y=0.3t(0≤t≤35),
∴當s=2.1時,0.3t=2.1,解得t=7,
∵該運動員從第一次經(jīng)過C點到第二次經(jīng)過C點所用的時間為68分鐘,
∴該運動員從起點點到第二次經(jīng)過C點所用的時間是7+68=75分鐘,
∴直線AB經(jīng)過(35,10.5),(75,2.1),
設(shè)直線AB解析式s=kt+b,
∴ 解得 ,
∴直線AB 解析式為s=﹣0.21t+17.85.
②該運動員跑完賽程用的時間即為直線AB與x軸交點的橫坐標,
∴當s=0,時,﹣0.21t+17.85=0,解得t=85
∴該運動員跑完賽程用時85分鐘
【解析】(1)根據(jù)路程=速度×時間,即可解決問題.(2)①先求出A、B兩點坐標即可解決問題.
②令s=0,求出x的值即可解決問題.本題考查一次函數(shù)綜合題,待定系數(shù)法等知識,解題的關(guān)鍵是搞清楚路程、速度、時間之間的關(guān)系,學會利用一次函數(shù)的性質(zhì)解決實際問題,屬于中考?碱}型.
【考點精析】掌握一次函數(shù)的性質(zhì)和一次函數(shù)的圖象和性質(zhì)是解答本題的根本,需要知道一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當k>0時,y隨x的增大而增大(2)當k<0時,y隨x的增大而減小;一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為2,一個銳角等于60°的菱形紙片,小芳同學將一個三角形紙片的一個頂點與該菱形頂點D重合,按順時針方向旋轉(zhuǎn)三角形紙片,使它的兩邊分別交CB、BA(或它們的延長線)于點E、F,∠EDF=60°,當CE=AF時,如圖1小芳同學得出的結(jié)論是DE=DF.
(1)繼續(xù)旋轉(zhuǎn)三角形紙片,當CE≠AF時,如圖2小芳的結(jié)論是否成立?若成立,加以證明;若不成立,請說明理由
(2)再次旋轉(zhuǎn)三角形紙片,當點E、F分別在CB、BA的延長線上時,如圖3請直接寫出DE與DF的數(shù)量關(guān)系;
(3)連EF,若△DEF的面積為y,CE=x,求y與x的關(guān)系式,并指出當x為何值時,y有最小值,最小值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從﹣3,﹣1, ,1,3這五個數(shù)中,隨機抽取一個數(shù),記為a,若數(shù)a使關(guān)于x的不等式組 無解,且使關(guān)于x的分式方程 ﹣ =﹣1有整數(shù)解,那么這5個數(shù)中所有滿足條件的a的值之和是( 。
A.﹣3
B.﹣2
C.﹣
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法:
(1)在同一平面內(nèi),不相交的兩條直線一定平行.(2)在同一平面內(nèi),不相交的兩條線段一定平行.(3)相等的角是對頂角.(4)兩條直線被第三條直線所截,同位角相等.(5)兩條平行線被第三條直線所截,一對內(nèi)錯角的角平分線互相平行.其中,正確說法的個數(shù)是( )
A. 1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,過點B作BE⊥AD,BF⊥CD,垂足分別為點E,F(xiàn),延長BD至G,使得DG=BD,連結(jié)EG,F(xiàn)G,若AE=DE,則 = .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正五邊形的邊長為2,連結(jié)對角線AD,BE,CE,線段AD分別與BE和CE相交于點M,N.給出下列結(jié)論:①∠AME=108°;②AN2=AMAD;③MN=3﹣ ;④S△EBC=2 ﹣1.其中正確結(jié)論的個數(shù)是( 。
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC的平分線交BC于點O,OC=1,以點O為圓心OC為半徑作半圓.
(1)求證:AB為⊙O的切線;
(2)如果tan∠CAO= ,求cosB的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標xOy中,正比例函數(shù)y=kx的圖象與反比例函數(shù)y= 的圖象都經(jīng)過點A(2,﹣2).
(1)分別求這兩個函數(shù)的表達式;
(2)將直線OA向上平移3個單位長度后與y軸交于點B,與反比例函數(shù)圖象在第四象限內(nèi)的交點為C,連接AB,AC,求點C的坐標及△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線m:y=ax2﹣6ax+c(a>0)的頂點A在x軸上,并過點B(0,1),直線n:y=﹣ x+ 與x軸交于點D,與拋物線m的對稱軸l交于點F,過B點的直線BE與直線n相交于點E(﹣7,7).
(1)求拋物線m的解析式;
(2)P是l上的一個動點,若以B,E,P為頂點的三角形的周長最小,求點P的坐標;
(3)拋物線m上是否存在一動點Q,使以線段FQ為直徑的圓恰好經(jīng)過點D?若存在,求點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com