【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點(diǎn)B(-2,0),點(diǎn)C(8,0),與y軸交于點(diǎn)A.
(1)求二次函數(shù)y=ax2+bx+4的表達(dá)式;
(2)連接AC,AB,若點(diǎn)N在線段BC上運(yùn)動(dòng)(不與點(diǎn)B,C重合),過點(diǎn)N作NM∥AC,交AB于點(diǎn)M,當(dāng)△AMN面積最大時(shí),求N點(diǎn)的坐標(biāo);
(3)連接OM,在(2)的結(jié)論下,求OM與AC的數(shù)量關(guān)系.
【答案】(1)y=﹣x2+x+4;(2)N(3,0);(3)OM=AC.
【解析】
試題分析:(1)由B、C的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;
(2)可設(shè)N(n,0),則可用n表示出△ABN的面積,由NM∥AC,可求得,則可用n表示出△AMN的面積,再利用二次函數(shù)的性質(zhì)可求得其面積最大時(shí)n的值,即可求得N點(diǎn)的坐標(biāo);
(3)由N點(diǎn)坐標(biāo)可求得M點(diǎn)為AB的中點(diǎn),由直角三角形的性質(zhì)可得OM=AB,在Rt△AOB和Rt△AOC中,可分別求得AB和AC的長,可求得AB與AC的關(guān)系,從而可得到OM和AC的數(shù)量關(guān)系.
試題解析:(1)將點(diǎn)B,點(diǎn)C的坐標(biāo)分別代入y=ax2+bx+4可得
,
解得,
∴二次函數(shù)的表達(dá)式為y=﹣x2+x+4;
(2)設(shè)點(diǎn)N的坐標(biāo)為(n,0)(﹣2<n<8),
則BN=n+2,CN=8﹣n.
∵B(﹣2,0),C(8,0),
∴BC=10,
在y=﹣x2+x+4中,令x=0,可解得y=4,
∴點(diǎn)A(0,4),OA=4,
∴S△ABN=BNOA=(n+2)×4=2(n+2),
∵MN∥AC,
∴
∴,
∴
∵﹣<0,
∴當(dāng)n=3時(shí),即N(3,0)時(shí),△AMN的面積最大;
(3)當(dāng)N(3,0)時(shí),N為BC邊中點(diǎn),
∵MN∥AC,
∴M為AB邊中點(diǎn),
∴OM=AB,
∵AB=,AC=,
∴AB=AC,
∴OM=AC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下列各組數(shù)為三角形的邊長,能構(gòu)成直角三角形的是( )
A. 8,12,17; B. 6,8,10; C. 1,2,3; D. 5,12,9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果|a|>0,則a( )
A.一定是正數(shù)
B.一定是負(fù)數(shù)
C.一定不是負(fù)數(shù)
D.不等于0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將數(shù)軸上一點(diǎn)P先向右移動(dòng)3個(gè)單位長度,再向左移動(dòng)5個(gè)單位長度,此時(shí)它表示的數(shù)是4,則原來點(diǎn)P表示的數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)興趣小組活動(dòng)中,李燕和劉凱兩位同學(xué)設(shè)計(jì)了如圖所示的兩個(gè)轉(zhuǎn)盤做游戲(每個(gè)轉(zhuǎn)盤被分成面積相等的幾個(gè)扇形,并在每個(gè)扇形區(qū)域內(nèi)標(biāo)上數(shù)字).游戲規(guī)則如下:兩人分別同時(shí)轉(zhuǎn)運(yùn)甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).
(1)請用列表或畫樹狀圖的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;
(2)分別求出李燕和劉凱獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,過點(diǎn)A作AD∥BC.若∠1=70°,則∠BAC的大小為( )
A.30°
B.40°
C.50°
D.70°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com