【題目】在一次數(shù)學(xué)興趣小組活動中,李燕和劉凱兩位同學(xué)設(shè)計了如圖所示的兩個轉(zhuǎn)盤做游戲(每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內(nèi)標(biāo)上數(shù)字).游戲規(guī)則如下:兩人分別同時轉(zhuǎn)運甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).
(1)請用列表或畫樹狀圖的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;
(2)分別求出李燕和劉凱獲勝的概率.
【答案】(1)共有12種等可能性;(2);
【解析】
試題分析:(1)根據(jù)題意列出表格,得出游戲中兩數(shù)和的所有可能的結(jié)果數(shù);
(2)根據(jù)(1)得出兩數(shù)和共有的情況數(shù)和其中和小于12的情況、和大于12的情況數(shù),再根據(jù)概率公式即可得出答案.
試題解析:(1)根據(jù)題意列表如下:
甲 乙 | 6 | 7 | 8 | 9 |
3 | 9 | 10 | 11 | 12 |
4 | 10 | 11 | 12 | 13 |
5 | 11 | 12 | 13 | 14 |
可見,兩數(shù)和共有12種等可能性;
(2)由(1)可知,兩數(shù)和共有12種等可能的情況,其中和小于12的情況有6種,和大于12的情況有3種,
∴李燕獲勝的概率為;
劉凱獲勝的概率為
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)興趣小組活動中,李燕和劉凱兩位同學(xué)設(shè)計了如圖所示的兩個轉(zhuǎn)盤做游戲(每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內(nèi)標(biāo)上數(shù)字).游戲規(guī)則如下:兩人分別同時轉(zhuǎn)運甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).
(1)請用列表或畫樹狀圖的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;
(2)分別求出李燕和劉凱獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點B(-2,0),點C(8,0),與y軸交于點A.
(1)求二次函數(shù)y=ax2+bx+4的表達式;
(2)連接AC,AB,若點N在線段BC上運動(不與點B,C重合),過點N作NM∥AC,交AB于點M,當(dāng)△AMN面積最大時,求N點的坐標(biāo);
(3)連接OM,在(2)的結(jié)論下,求OM與AC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.在Rt△ABC中,∠ABC=90°,點D是斜邊上的中點,點P在AB上,PE⊥BD于E,PF⊥AC于F,若AB=6,BC=3,則PE+PF=( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點B(-2,0),點C(8,0),與y軸交于點A.
(1)求二次函數(shù)y=ax2+bx+4的表達式;
(2)連接AC,AB,若點N在線段BC上運動(不與點B,C重合),過點N作NM∥AC,交AB于點M,當(dāng)△AMN面積最大時,求N點的坐標(biāo);
(3)連接OM,在(2)的結(jié)論下,求OM與AC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列尺規(guī)作圖的語句錯誤的是( )
A.作∠AOB,使∠AOB=3∠αB.作線段AB,使線段AB=a
C.以點O為圓心畫弧D.作∠ABC,使∠ABC=∠α+∠β
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】美麗的黃河宛如一條玉帶穿城而過,沿河兩岸的濱河路風(fēng)情線是蘭州最美的景觀之一.?dāng)?shù)學(xué)課外實踐活動中,小林在南濱河路上的A,B兩點處,利用測角儀分別對北岸的一觀景亭D進行了測量.如圖,測得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到南濱河路AC的距離約為多少米?(結(jié)果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①全等的兩個圖形一定成軸對稱;②成軸對稱的兩個圖形一定全等③軸對稱圖形的對稱點一定在對稱軸的兩側(cè);④若點A、B關(guān)于直線MN對稱,則直線MN垂直平分線段AB.正確的有 ( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】美麗的黃河宛如一條玉帶穿城而過,沿河兩岸的濱河路風(fēng)情線是蘭州最美的景觀之一.?dāng)?shù)學(xué)課外實踐活動中,小林在南濱河路上的A,B兩點處,利用測角儀分別對北岸的一觀景亭D進行了測量.如圖,測得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到南濱河路AC的距離(結(jié)果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com